MECHANISM OF THE ⁹Be(¹¹B, ¹²B)⁸Be REACTION

V. M. Kyryanchuk, A. T. Rudchik, A. Budzanowski, B. Czech, T. Czosnyka, L. Głowacka, S. Klichewski, E. I. Koshchy, S. Yu. Mezhevych, O. A. Momotyuk, A. V. Mokhnach, K. Rusek, S. B. Sakuta, R. Siudak, I. Skwirczyńska, A. Szczurek

Angular distribution of the ${}^{9}\text{Be}({}^{11}\text{B}, {}^{12}\text{B}){}^{8}\text{Be}$ reaction were measured at $E_{\text{lab}}({}^{11}\text{B}) = 45$ MeV for the transitions to the ground states of ${}^{12}\text{B}$ i ${}^{8}\text{Be}$ and to the 0,953 MeV (2⁺) excited state of ${}^{12}\text{B}$ and 2,94 MeV (2⁺) excited state of ${}^{8}\text{Be}$. The data were analyzed within the coupled-reaction-channels (CRC) method. One- and two-step transfers of nucleons and clusters were included in the coupling scheme. It was found that the neutron transfer dominates in the ${}^{9}\text{Be}({}^{11}\text{B}, {}^{12}\text{B}){}^{8}\text{Be}$ reaction. The parameters of the ${}^{12}\text{B} + {}^{8}\text{Be}$ optical model potential were deduced.