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Distance dependent form of cluster mean field parameters is used for interacting channel fragments in resonating 

group calculation of elastic scattering 3He(d, d)3He. Simple two level approximation of this dependence enables to 
obtain an essential improving of calculated differential cross sections. In the interaction region the values of cluster radii 
are near 55 % from far asymptotic phenomenological value, the transition point at studied energy values is placed 
within interval 11.2 - 12.6 fm of intercluster distance. 
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1. Introduction 
 

Microscopic calculations of scattering in system 
2H + 3He are executed at present for energy over 
7 MeV by Tang Y.C. with collaborators [1, 2]. Since 
the first work [1] authors show in a number of 
publications the more or less close to experiment 
results of their microscopic calculations corrected 
with help of fitted optical potentials or, in last 
versions [2], due to massive including into basis of 
so-called "deuteron pseudo-states" with arbitrary 
chosen characteristics. For 3He authors [2] do not 
use the pseudo-states, relying upon its 
incompressibility. The calculation is additionally 
complicated through a low threshold of some three-
body reaction channels quickly opening at energy 
over 2.22 MeV. Moreover, for system 2H + 3He the 
channel p + 4He (Q = 18.35 MeV) is permanently 
open. Limited success of calculation results in 
combination with uncertainty in the source physical 
positions does not stimulate the further development, 
that means also complication, the ideology [1, 2] 
since its concepts for the scattering 3He(d, d)3He 
cause more questions than give explanations. 

This situation induces to search for other 
approaches to description of the process within the 
RGM framework. It seems reasonable to build the 
adequate representation for wave functions of 
channel fragments in the assumption that interaction 
of nuclei at the initial stage results in such changes 
of nucleon movement within each cluster which can 
be effectively reproduced through change of 
parameters of mean cluster potential. The unique 
parameter of this oscillator potential is radius 

mω  which becomes therefore dependent on 
intercluster distance. It is convenient for an initial 
estimation to choose this dependency in the simplest 
step-like form and then define its parameters from 
fitting of calculated differential sections to 
experimental data [3, 4]. Present work applies this 
approach to calculation of scattering 3He(d, d)3He. 
Single-channel calculation with the traditional form 

of basis in this case so overestimates the values of 
differential cross sections that there is improbable to 
explain the discrepancies by influence of competing 
reaction channels, especially at energy lower than 
2.22 MeV where only competing channel p + 4He is 
open and cross section of corresponding reaction 
3He(d, p)4He is rather small [5]. It means that at least 
at E < 2.22 МeV the main part of divergences should 
be eliminated through improvement of single-
channel calculation. That is why the single channel 
calculation is chosen to obtain the parameter values 
of above-formulated representation for cluster wave 
functions, and possible influence of ignored reaction 
channels is the object of following analysis. 
Necessary resonating group equations for scattering 
3H(d, d)3H are considered in Section 2 together with 
used nucleon - nucleon potentials (NNP) and 
accepted construction of basis as well as 
determination of its parameters. Section 3 explains 
the main positions of numerical solution of the 
obtained equations and describes the comparing of 
calculated differential cross sections to a set of 
available experimental data at six energy values 
from interval 1.2 MeV ≤ E ≤ 8.8 MeV. 

 
2. Resonating group formulation 

 
In order to build suitable resonating group 

formalism the variational method is used to 
minimize values of the matrix elements 
 

 tH EΨ − Ψ  (1) 
 
where H is microscopic Hamiltonian and Et total 
energy of the system. Completely antisymmetrized 
RGM wave function in this case: 
 

 [ ]1 1 2 2( ) ( ) ( )
I II

I

IM I MIM
IM

F r ξ ξ
⎧ ⎫⎪ ⎪Ψ = Α Φ Φ Χ⎨ ⎬
⎪ ⎪⎩ ⎭
∑  (2) 

 
Here 

II MΧ  is component of spin function with 
channel spin I and its projection MI. Product of 
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cluster wave functions 1 1( )ξΦ  and 2 2( )ξΦ  is 
projected on the spin state IMI what reflects the 
lower indexes of the square brackets. These 
functions are the Slater determinants constructed of 
single-nucleon wave functions taken as products of 
spatial, spin and isospin functions of each nucleon. 
Their variables ξ1, ξ2 unite the spatial, spin and 
isospin variables of all nucleons of corresponding 
cluster. Antisymmetrized expression in square 
brackets forms spatial basis for wave function of 
relative movement of the channel fragments 

( )
IIMF r , which depends on the distance between 

fragments r . After transform to spherical 
coordinates and expanding Ψ  in series over the 
states of total angular momentum JM with spin I and 
system parity π ( ( )JM I

lf rπ  are partial coefficients of 
such series), for radial functions 

( ) ( )JM I JM I
l lg r r f rπ π=  by using of variational 

methods one can obtain the Euler's equations which 
determine the minimum of functional (1). For each 
system state JMπI (these indexes for functions ( )lg r  
and coefficients of the equations further are omitted) 
the dynamic equations have a form 

 

2 2 2 2 2

2 2 2 2

( 1) 1( ) ( ) ( , ) ( , )
2 2 2l l l

d l l V r E g r r dr r N r r N r r
dr r r rμ μ

⎧ ⎫ ⎧⎡ ⎡+ ∂ ∂⎪ ⎪ ⎪⎤ ′ ′ ′ ′− + + − + − − +⎨ ⎬ ⎨⎢ ⎢⎥ ′∂ ∂⎦⎪ ⎪ ⎪⎣ ⎣⎩ ⎭ ⎩
∫  

 

[ ]2 2

( 1) ( 1)( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )l l l l l l l
l l l lN r r N r r E N r r N r r U r r U r r g r

r r
+ + ⎫⎤′ ′ ′ ′ ′ ′ ′+ + − + + + −⎬⎥′ ⎦ ⎭

 

 

2

( , ) ( , ) ( ) 0
2 l l ldr r N r r r N r r g r

r rμ
∂ ∂⎡ ⎤′ ′ ′ ′ ′− + =⎢ ⎥′∂ ∂⎣ ⎦∫ .                                            (3) 

 

Here E is energy of relative movement of channel 
fragments. Direct potential for their interaction V (r) 
is formed of local terms of matrix elements of 
intercluster interaction taken on basis functions. The 
non local terms of these matrix elements form the 
integral kernels ( , )lU r r′ , the non local part of 
overlap matrix elements produces the kernels 

( , )lN r r′ . In the integral part of equations by 
mathematical transformations during the variational 
procedures it is possible to replace the action of 
differential operators on the unknown functions 

( )lg r  by differentiation of the kernels ( , )lN r r′ . 
That form of the equations is more convenient for 
the further numerical solution. Comparatively 
simple representation for the dynamic equations (3) 
results from mathematical simplicity of matrix 
elements obtained with the spatial basis formed with 
wave functions of channel fragments, nuclei 2H and 
3He, in their ground states. For the same reason the 
expressions for potential and integral kernels also 
are rather simple. For oscillator potential of channel 
fragments these variables are given by expressions 
with real parameters , , , ,k k k k ko u vα β : 
 

( )( ) 2( ) exp v
k k

k

V r v rα= −∑ , 

( )( ) ( ) 2 ( ) 2( , ) ( )expo o o
l k l k k k

k

N r r o h rr r rγ α β′ ′ ′= − −∑ , 

 

( )( ) ( ) 2 ( ) 2( , ) ( )expu u u
l k l k k k

k

U r r u h rr r rγ α β′ ′ ′= − −∑ ; 

 

( )0, 0α β> > .                           (4) 
 
The number of terms in the sum for ( , )lN r r′  is 
determined by number of the Gaussians used for 
representation of nucleon 1s-sell wave functions in 
the cluster. In the sums for ( )V r  and ( , )lU r r′  this 
number also depend on the quantity of Gaussians 
used in expression for nucleon-nucleon potential. 
The number of terms in the integral kernels 
additionally increases due to intercluster nucleon 
permutations at the antisymmetrization of wave 
function Ψ . Functions ( )lh crr′  in integral kernels 
appear because of expanding on spherical harmonics 
according to standard formulae of the exponential 
factors [ ]exp ( )rrγ ′  in exchange matrix elements. 

In most of calculations for NNP is applied the 
expression used in the previous works on scattering 
in the systems of nuclei 4≤A  [1, 2] at small 
energy, with the same parameter values:  

 

( ) ( ) ( )
2 11 1 1( ) 1 ( ) 1 ( ) 1

2 2 2 2
jzt s r iz

ij ij ij ij ij ij
ij

ev r P V r P V r m mP
r

σ σ ττ ++⎡ ⎤ ⎡ ⎤= + + − − + +⎣ ⎦⎢ ⎥⎣ ⎦
.                      (5) 

 
Here before the potentials of interaction in nucleon 
pair i, j for spin-triplet (Vt) and spin-singlet (Vs) 

states are the corresponding projection operators 
expressed through the exchange operator of nucleon 
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spin coordinates ijPσ . The multiplier responsible for 
a ratio of direct and spatial-exchange part NNP in 
the second square brackets is written down in the 
notation accepted for Volkov NNP, operator r

ijP  
exchanges the spatial coordinates of nucleons, m is 
the relative contribution of Majorana interaction. 
Coulomb part is expressed through z-components of 
isospin operator for nucleons i, j ,iz jzτ τ . 
 

2

( ) t ijrt t
ijV r V e κ−= ,      66.92tV = − MeV, 

 
0.415tκ = fm-2, 

 
2

( ) s ijrs s
ij ijV r V e κ−= ,      29.05sV = − MeV, 

 
0.292sκ = fm-2. 

 
To estimate the sensitiveness of the result to used 

NNP expression the calculations were carried out 
also with variant V1 of Volkov potential improved 
in [3]. Both used NNP expressions are determined 
only for even states of relative movement in the 
nucleon pair. 

The initial version of spatial basis is built of the 
wave functions for ground states of nuclei 2H and 
3He. According to [1] for 2H this function is a linear 
combination of three Gaussians: 

 

( )
3 2

2
1 1

1exp
2

kA

k ik j k
i jik

C r R
b= =

⎧ ⎫
Φ = − −⎨ ⎬

⎩ ⎭
∑ ∑ .          (6) 

 

Here jr  is coordinate of nucleon j, kR  is coordinate 
of the center of mass for cluster with serial number k 
(k = 1, 2). Ak is mass number of cluster k. With NNP 
(5) and set of values bik given in [2] the function (6) 
provides correct values of binding energy and root-
mean-square radius for deuteron. For 3He authors 
[1, 2] use here one Gaussian to obtain according to 
the standard practice the correct radius value only. 
For elastic scattering, however, calculation with both 
forms of cluster functions kΦ  gives, as a rule, the 
results far from experiment, and with both form for 
2H wave function the calculation results are rather 
similar. 

According to general conception formulated in 
Introduction the oscillator radii bk during the 
rapprochement of channel fragments jump at certain 
distance rx from phenomenological far asymptotic 
values ( )kb e  to some values bk(i) which provide the 
best possible describing of experimental results for 
elastic scattering. Achieved proximity of calculated 
and experimental data is a principal test of accepted 
procedure. 

3. Calculations and results 
 

The general method used for solution of the 
equation system (3) is described in [3, 4] in 
application to scattering in the system 4He + 4He. 
Due to non-zero spin 2H and 3He there is two 
possible values I for each JMπ state and then volume 
of the calculations approximately doubles. For 
numerical solution the equation system (3) is written 
down on the two-dimensional radial grid rr ′,  with 
constant step h in the region br rε ≤ ≤ , br rε ′≤ ≤   
(ε is a non-zero small constant, rb denotes a distance 
where the nuclear interaction of the channel 
fragments may be neglected compared with the 
Coulomb one). Coefficients of the equations in each 
point ,r r′  are determined from the preliminary 
computed set of matrix elements (4). Coulomb part 
for NNP at small rij values (≤ 6 fm) have been 
expressed microscopically according to [3, 4] as 
linear combination of Gaussians. For bounding 
values ( )lg r  at r ε=  the free movement 
expressions are used. Matching the general form of 
internal solution in the far asymptotic region to the 
usual external Coulomb solution one obtains the 
collision matrix. With its matrix elements the values 
of elastic differential cross sections are calculated on 
standard way for both possible states 1

2I =  and 
3

2I = . Observed d dσ Ω  is obtained as linear 
combination of these two results with coefficients 1

3  
and 2

3 , correspondingly. Comparing of the cross 
sections calculated with increasing rb gives 
necessary value rb = 20 fm for considered interval of 
center mass energy 1.2 MeV E≤ ≤ 8.76 MeV. 
Admissible h value is found also empirically through 
comparing of the cross sections calculated with 
decreasing h value. As in [3] a stable calculation 
results are obtained at h ≤  0.12 fm therefore the 
main calculation set is carried out with h = 0.1 fm, 
and around the found optimum parameter values the 
calculations are repeated with h = 0.05 fm. The 
calculation takes into account required quantity of 
the Jπ states, 0 ≤ J ≤ 10 of both parities. 

The experimental differential cross sections 
3He(d, d)3He at six characteristic center mass energy 
values are chosen among available data [6, 7]. First 
energy point E = 1.2 MeV belongs to “almost single-
channel” region where only reaction 3He(d, p)4He 
(Q = 18.354 MeV) with rather small cross section 
[5] competes with elastic scattering. At next energy 
point E = 1.8 MeV opens a second competing 
channel p + p + t (Q = –1.461 MeV). Next two 
energy values (3 MeV, 4.8 MeV) correspond to open 
channel n + p + 3He (Q = –2.224 MeV). At E = 
= 6.9 MeV an additional competing channel 
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p + d + d is open (Q = –5.494 MeV). The maximum 
E = 8.76 MeV lies over the next competing channel 
n+ p + p + d (Q = –7.718 MeV).  

At each energy value the differential cross 
sections first are calculated with NNP (5) on the 
basis composed of the wave function (6) for the 
ground state 2H and one Gaussian wave function 
3He, both with parameters [2]. Calculated d dσ Ω  

are in general essentially higher than experimental 
data. Using for 2H one Gaussian form (6) with 

11b =  2.19 fm (with the same root-mean-square 
radius) gives the result of similar shape. Dashed line 
in Figs. 1 and 2 shows the latter result. For 3He 
everywhere is used value 12b =  1.65 fm [2]. 

 

     dσ/dΩ, mb · sr-1 

 
                                                                               θ, deg. 

      dσ/dΩ, mb · sr-1 

 
                                                                             θ, deg.

 

Fig. 1. Differential cross sections for d + 3He elastic 
scattering. Solid line represents the values calculated with 
modified basis. Dashed line corresponds to calculation 
with usual basis. 

 

Fig. 2. Differential cross sections for d + 3He elastic 
scattering. Solid line represents the result obtained with 
modified basis and projected wave function Ψ  (see text). 
Dashed line shows the result with usual basis. 

 

Further calculations are carried out according to 
principles presented in this section. Oscillator radii 

( )kb e  remain the phenomenological ones: 

1( )b e =  2.19 fm, 2 ( )b e =  1.65 fm. The optimum 
values ( ),k xb i r  at first was found from fitting to the 
experiment of d dσ Ω  calculated on a rough two 
dimensional grid 0.7 fm ( )kb i≤ ≤ 6 fm, 
1 fm x br r≤ < = 20 fm with step values 0.1 fm and 
0.2 fm for ( )kb i  and rx, correspondingly. Around the 
found optimum parameter values this procedure was 
repeated with lesser step of the parametric grid. At 
the last stage the value of space-exchange parameter 
was varied within the interval 0.5 m≤ ≤ 0.7. 

In all energy points the most close to experiment 
results are obtained with 1( )b i =  1.22 fm (2H), 

2 ( )b i = 0.894 fm (3He), m = 0.55. At starting energy 
point E = 1.2 MeV xr =  12.6 fm and fitted in this 

way d dσ Ω  practically describes the available 
experimental points for scattering angles θ ≥ 60○ 
(see Fig. 1). At E = 1.8 MeV with xr =  12.5 fm the 
calculated cross sections essentially improve, in 
region θ ≥  80○ one can see a practically complete 
describing. At E = 3 MeV where the second three 
body channel (n + p + 3He) is open the best 
calculation result (rx =12.4 fm) is not so close to 
experiment because of a bump at θ ≈  80○. 

At E > 3 MeV the calculated d dσ Ω  also 
changes towards the experimental data but visible 
discrepancies remain here. For the single channel 
results that appears quite naturally. In this energy 
region, however, the calculation results become 
rather close to experiment after projection of the 
wave function Ψ on the certain group of the Jπ 
states. At E = 4.8 MeV this is projection on 1

2
+ , 

3
2
+ , 5

2
+  states with rx = 12 fm, at E = 6.9 MeV and 
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E = 8.76 MeV this is projection on the 3
2
+ , 3

2
− , 5

2
+  

states with rx = 11.4 fm and rx = 11.2 fm, correspon-
dingly. Solid lines in Fig. 2 represent these results. 
Apparently just upper listed states mainly contribute 
to elastic scattering at studied energies while the rest 
of the Jπ states are more coupled with others 
reaction channels. It should be noted that for Ψ  
with invariables values bk( 1 1( ) ( )b i b e≡  and 

2 2( ) ( )b i b e≡ ) projection on the listed Jπ states (or 
on the another ones) gives the worse results. This 
means that the modified basis is effective for 
energies over the single channel region too. The 
calculation with Volkov NNP at all energy values 
gives the similar results. 

As can be seen the used approach to basis 
construction is productive with respect to describing 
of experimental elastic cross sections, and remaining 
discrepancies may be attributed to influence of the 
competing reaction channels. Observed proximity of 
the calculated and experimental d dσ Ω  conforms 
to the basic assumption about influence of the 
nucleus-nucleus interaction on the parameters of 
nuclear mean field. That also attests the efficiency of 
used simple two-level approximation for dependence 
of oscillator radius on the distance between 
interacting nuclei. The weak sensitiveness of the 
calculated d dσ Ω  to the used NNP form shows that 
just the transformation of the basis is determinant in 
this case. In terms of eq. (3) this means that the joint 
influence of the direct potential ( )V r  and exchange 
interaction kernels ( , )lU r r′  is almost negligible in 
comparison with contribution of kinetic energy 
operators. It shows that the interaction between the 
channel fragments at xr r≤  mainly causes a 

transformation of the nuclear mean field, and the 
nucleus-nucleus interaction is of minor importance. 

 

4. Conclusion 
 

Single channel calculation of elastic scattering 
3He(d, d)3He in the energy region 1 - 9 MeV does 
not give an acceptable describing of the 
experimental differential cross sections with basis 
built of the ground states of channel fragments. The 
modified basis construction considering the possible 
change of the mean field inside the interacting 
channel fragments displays a wide capability to 
improve the calculation results. Important change in 
the calculated cross sections take place after most 
simple two-level approximation for dependence of 
the cluster mean field parameter on the intercluster 
distance. These results most close to experiment at 
energy lower 2.22 MeV where the competing 
reaction channels practically are not expressed. At 
higher energies a number of open three-body 
channels effectively compete with elastic scattering 
and the modified basis improves the results of the 
single-channel calculation not so much. Within this 
energy region one can see, however, a selectivity of 
the elastic scattering with respect to the states of the 
total angular momentum. Projecting of the wave 
function on certain group Jπ states leads to a visible 
improvement of calculated differential cross 
sections. Observed results show that in framework 
of accepted approaches inside the interaction region 
the size of channel fragments essentially decrease 
but the fragments retain the main features of their 
initial structure even despite the completely 
antisymmetrized system wave function. 
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РОЗРАХУНОК  РОЗСІЯННЯ  3He(d, d)3He  ПРИ  E = 1 - 9 MеВ 

ЗА  МЕТОДОМ  РЕЗОНУЮЧИХ  ГРУП 
 

Ю. Ю. Козир  
 

Розрахунки пружного розсіяння 3He(d, d)3He за методом резонуючих груп виконано в припущенні 
залежності параметрів кластерних потенціалів фрагментів каналу від відстані між ними. Проста дворівнева 
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апроксимація цієї залежності дає змогу істотно поліпшити розрахункові значення диференціальних перерізів. В 
області інтенсивної взаємодії кластерів значення їхніх радіусів зменшуються до приблизно 55 % від значень на 
дальній асимптотиці, дистанція переходу монотонно спадає від 12,6 до 11,2 фм при збільшенні енергії в межах 
дослідженого інтервалу. 

Ключові слова: пружне розсіяння, метод резонуючих груп, кластерний потенціал, дистанційно-залежний 
базис. 
 

РАСЧЕТ  РАССЕЯНИЯ  3He(d, d)3He  ПРИ  E = 1 - 9 MэВ 
ПО  МЕТОДУ  РЕЗОНИРУЮЩИХ  ГРУПП 

 
Ю. Е. Козырь  

 
Расчеты упругого рассеяния 3He(d, d)3He по методу резонирующих групп выполнены в предположении 

зависимости параметров кластерных потенциалов фрагментов канала от расстояния между ними. Простая 
двухуровневая аппроксимация этой зависимости позволяет существенно улучшить расчетные дифферен-
циальные сечения. В области интенсивного взаимодействия кластеров значения их радиусов уменьшаются до 
примерно 55 % от значений на дальней асимптотике, дистанция перехода монотонно убывает от 12,6  до 
11,2 фм при возрастании энергии в пределах рассмотренного интервала. 

Ключевые слова: упругое рассеяние, метод резонирующих групп, кластерный потенциал, дистанционно-
зависимый базис. 
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