= ЯДЕРНА ФІЗИКА =

УДК 539.165

© 2011 P. Belli¹, R. Bernabei^{1,2}, R. S. Boiko³, V. B. Brudanin⁴, F. Cappella^{5,6}, V. Caracciolo⁷, R. Cerulli⁷, D. M. Chernyak³, F. A. Danevich³, S. d'Angelo^{1,2}, A. E. Dossovitskiy⁸, E. N. Galashov⁹, A. Incicchitti^{5,6}, V. V. Kobychev³, S. S. Nagorny³, F. Nozzoli¹,
B. N. Kropivyansky³, V. M. Kudovbenko³, A. L. Mikhlin⁸, A. S. Nikolaiko³, D. V. Poda^{3,7}, R. B. Podviyanuk³, O. G. Polischuk³, D. Prosperi ^{5,6,†}, V. N. Shlegel⁹, Yu. G. Stenin⁹, J. Suhonen¹⁰, V. I. Tretyak³, Ya. V. Vasiliev⁹

¹ Istituto Nazionale di Fisica Nucleare, Sezione Roma "Tor Vergata", Rome, Italy

² Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy

³ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine ⁴ Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Joini Institute for Nuclear Research, Duona, Moscow region, Russia

⁵ Istituto Nazionale di Fisica Nucleare, Sezione Roma "La Sapienza", Rome, Italy

⁶ Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy

⁷ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

⁸ Joint Stock Company NeoChem, Moscow, Russia

⁹Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

¹⁰ Department of Physics, University of Jyväskylä, Jyväskylä, Finland

FIRST RESULTS OF THE EXPERIMENT TO SEARCH FOR 2 β DeCAY OF ¹⁰⁶Cd WITH THE HELP OF ¹⁰⁶CdWO₄ CRYSTAL SCINTILLATORS

An experiment to search for 2 β processes in ¹⁰⁶Cd with the help of ¹⁰⁶CdWO₄ crystal scintillator (mass of 215 g), enriched in ¹⁰⁶Cd up to 66 %, is in progress at the Gran Sasso National Laboratories of the INFN (Italy). After 1320 h of data taking, limits on double beta processes in ¹⁰⁶Cd have been established on the level of $10^{19} - 10^{20}$ yr, in particular (all the results at 90 % C.L.): $T_{1/2}(0v2\varepsilon) > 3.6 \cdot 10^{20}$ yr, $T_{1/2}(2v\varepsilon\beta^+) > 7.2 \cdot 10^{19}$ yr, and $T_{1/2}(2v2\beta^+) > 2.5 \cdot 10^{20}$ yr. Resonant $0v2\varepsilon$ processes have been restricted as $T_{1/2}(0v2K) > 1.4 \cdot 10^{20}$ yr and $T_{1/2}(0vLK) > 3.2 \cdot 10^{20}$ yr. A possible resonant enhancement of the $0v2\varepsilon$ processes is estimated in the framework of the QRPA approach.

Keywords: double beta decay, ¹⁰⁶Cd, CdWO₄ crystal scintillator.

Introduction

Neutrinoless double beta decay $(0v2\beta)$ is a powerful tool to investigate properties of neutrino and weak interaction. Study of this extremely rare effect could determine an absolute neutrino mass and its hierarchy, establish nature of neutrino (Majorana or Dirac particle), check the lepton number conservation, possible contribution of righthanded admixture to weak interaction, existence of Nambu-Goldstone bosons (majorons).

The isotope ¹⁰⁶Cd is one of the most promising objects for 2 β experiments thanks to large energy release ($Q_{2\beta} = 2770 \pm 7 \text{ keV}$ [1]) and comparatively high natural abundance ($\delta = 1.25 \pm 0.06$ % [2]). The decay scheme of the triplet ¹⁰⁶Cd - ¹⁰⁶Ag - ¹⁰⁶Pd is presented in Fig. 1. Experiments fulfilled to-date give only $T_{1/2}$ limits on 2 β processes in ¹⁰⁶Cd on the level of 10¹⁸ - 10²⁰ yr [3 - 7]. Taking into account theoretical calculations [8 - 14], double beta decay of ¹⁰⁶Cd could be detected at the level of sensitivity of 10²¹ - 10²² yr.

Cadmium tungstate (CdWO₄) crystal scintillators were successfully applied in experiments to search for double β decay [3, 6, 16], investigations of rare α [17] and β [18, 19] decays of cadmium and tungsten

Fig. 1. Decay scheme of ¹⁰⁶Cd [15]. Energies of excited levels and emitted γ quanta are in keV (relative intensities of γ quanta are given in parentheses). $Q_{2\beta}$ is the double beta decay energy.

isotopes. A cadmium tungstate crystal scintillator enriched in ¹⁰⁶Cd to 66 % (¹⁰⁶CdWO₄) was developed with the aim to realize a high sensitivity experiment to search for 2 β processes in ¹⁰⁶Cd [20]. First results of the experiment are presented here.

[†] Deceased.

Experiment

The ¹⁰⁶CdWO₄ scintillator (Ø27 · 50 mm, mass of 215.4 g) is fixed inside a cavity Ø47 · 59 mm (filled with high-purity silicon oil) in the polystyrene light-guide $\emptyset 66 \cdot 312$ mm. Two high purity quartz light-guides Ø66 · 100 mm are optically connected on opposite sides of the light-guide. The assembling is viewed by two 3" low radioactive EMI9265 photomultipliers (PMT). The detector is installed in the low background DAMA R&D set-up at the Gran Sasso National Laboratories of the INFN. It is sealed in a low radioactive Cu box flushed with high purity nitrogen gas to avoid presence of radon. The Cu box is surrounded by Cu (10 cm of thickness), 15 cm of lead, 1.5 mm of cadmium and 4 to 10 cm of polyethylene/paraffin. The shield is contained inside a Plexiglas box, also flushed by high purity nitrogen. An event-by-event data acquisition system records amplitude, arrival time, and pulse shape of events by a 1 GS/s 8 bit DC270 Transient Digitizer by Acqiris (adjusted to a sampling frequency of 20 MS/s) over a time window of 100 µs. Energy dependence of the detector energy resolution was measured with ²²Na, ¹³³Ba, ¹³⁷Cs, ²²⁸Th and ²⁴¹Am sources as FWHM_{γ} = $\sqrt{11.2 \cdot E_{\gamma}}$, where E_{γ} is the energy of γ quanta; FWHM_{γ} and E_{γ} are in keV.

Results and discussion

The energy spectrum of $\gamma(\beta)$ events accumulated with the ¹⁰⁶CdWO₄ detector over 1320 h is presented in Fig. 2. The $\gamma(\beta)$ events were selected by pulse-

Fig. 2. Energy spectrum of $\gamma(\beta)$ events measured with ¹⁰⁶CdWO₄ scintillator over 1320 h in the lowbackground set-up. (Inset) Beta decay of ^{113m}Cd dominates at low energy (the data obtained over 268 h).

shape discrimination described in [21, 17, 22]. The counting rate ≈ 24 counts/s below the energy of ≈ 0.6 MeV is mainly due to the beta decay of ^{113m}Cd

 $(Q_{\beta} = 584 \text{ keV}, T_{1/2} = 14.1 \text{ yr } [15])$ with the activity $112 \pm 10 \text{ Bq/kg}$. The contamination of the enriched ¹⁰⁶Cd by ^{113m}Cd has been detected in the lowbackground TGV experiment [23]. Contributions to the background above the energy 0.6 MeV were analyzed by the time-amplitude (see, e.g. [24, 25]) and the pulse-shape discrimination techniques, as well by fit of the energy spectrum (the procedure is described in [6, 16, 19]) by models of background (internal ⁴⁰K, ²⁰⁷Bi, U/Th, external γ rays from the set-up) simulated with the help of the EGS4 code [26]. Two peaks at ≈ 1.06 and $\approx 1.63 \text{ MeV}$ can be explained by contamination of the crystal by ²⁰⁷Bi. The data on radioactive contamination of ¹⁰⁶CdWO₄ crystal are presented in Table 1.

Table 1. Radioactive contamination of ¹⁰⁶CdWO₄ crystal. Data for ¹¹⁶CdWO₄ from [6, 17] and for CdWO₄ [19] are given for comparison

Chain	Nuclide	Activity (mBq/kg) in crystals		
Chain		106 CdWO ₄	116 CdWO ₄	CdWO ₄
²³² Th	²³² Th	≤ 0.1	0.053(9)	≤ 0.026
	²²⁸ Th	0.053(5)	0.039(2)	≤ 0.014
²³⁸ U	²³⁸ U	≤ 0.3	≤ 0.6	≤ 0.045
	²³⁰ Th	≤ 0.8	≤ 0.5	≤ 0.18
	²²⁶ Ra	≤ 0.3	≤ 0.004	≤ 0.018
	²¹⁰ Po	≤ 0.3		≤ 0.063
Total α activity		2.1(1)	1.40(10)	0.26(4)
(U/Th)				
	⁴⁰ K	≤11	0.3(1)	≤ 5
	¹¹³ Cd	174*	91(5)	558(4)
	^{113m} Cd	112 000(5	0.43(6)	≤ 3.4
		000)		
	²⁰⁷ Bi	1.3(3)		

^{*}Calculated taking into account the isotopic composition of ¹¹³Cd in ¹⁰⁶CdWO₄ and the half-life of ¹¹³Cd [19].

There are no peculiarities in the spectrum which could be ascribed to the double β processes in ¹⁰⁶Cd. Therefore only lower half-life limits can be set according to formula: $\lim T_{1/2} = N \eta t \ln 2 / \lim S$, where N is the number of 106 Cd nuclei (2.420 \cdot 10 23), η is the detection efficiency, t is the measuring time, and $\lim S$ is the number of events of the effect searched for which can be excluded at a given confidence level (C.L.). To estimate values of lim S, the experimental energy spectrum was fitted in different energy intervals by the sum of components representing the background (internal ⁴⁰K, ²⁰⁷Bi, U/Th, external γ from the details of the set-up) and the expected models for 2β processes in ¹⁰⁶Cd simulated by using the EGS4 code. Some examples of the energy spectra of 2β processes in ¹⁰⁶Cd are presented in Fig. 3. The fits allow us to set limits on the processes of 2ß decay in ¹⁰⁶Cd presented in Table 2.

Fig. 3. Simulated response functions of the 106 CdWO₄ scintillator to 2 β processes in 106 Cd.

Table 2. Half-life limits on 2β processes in ¹⁰⁶Cd

		Experimental limit on $T_{1/2}$		
Decay	Loval of ¹⁰⁶ Dd	at 90 % C.L.		
channel	Level of Pu	Present	Best previous	
		work	limits	
0ν2ε	~ ~	$> 2 (10^{20})$	$\geq 8.0 \cdot 10^{18}$	
	g.s.	≥ 3.6 · 10	[6]	
$2\nu\epsilon\beta^+$		$\geq 7.2 \cdot 10^{19}$	\geq 4.1 \cdot 10 ²⁰	
-	g.s.		[5]	
	2 ⁺ 5121 X	$\geq 9.0\cdot10^{19}$	$\geq 2.6 \cdot 10^{20}$	
	2_1 512 KeV		[5]	
	2 ⁺ 1129 l-3V	$> 2.2 + 10^{20}$	$\geq 1.4 \cdot 10^{20}$	
	2_{1} 1128 KeV	≥ 3.2 · 10	[5]	
	0 ⁺ 11241 X	> 2.5 1020	$\geq 1.6 \cdot 10^{20}$	
	$0_1 1134 \text{ keV}$	≥ 5.5 · 10	[7]	
0νεβ ⁺	<i>a</i>	$> 2.1 + 10^{20}$	$\geq 3.7 \cdot 10^{20}$	
	g.s.	≥ 2.1 · 10	[5]	
$2\nu 2\beta^+$	<i>a a</i>	$> 2.5 \cdot 10^{20}$	$\geq 2.4 \cdot 10^{20}$	
	g.s.	≥ 2.3 · 10	[5]	
	2^{+} 512 keV	$> 2.2 10^{20}$	$\geq 1.7 \cdot 10^{20}$	
	2_1 S12 KeV	≥ 3.2 · 10	[7]	
$0\nu 2\beta^+$	<i>a a</i>	$> 2.1 10^{20}$	$\geq 2.4 \cdot 10^{20}$	
	g.s.	22.1 · 10	[5]	
Resonant	2718 koV	$> 1.4 \cdot 10^{20}$		
0v2K	2/10 KCV	≥ 1.4 · 10	_	
Resonant	2741 keV	$> 2.2 \cdot 10^{20}$	$\geq 1.6 \cdot 10^{\overline{20}}$	
0vKL	2/41 KUV	≥ 3.2 · 10	[7]	

In case of 0v capture of two electrons from the *K* shell (or *L* and *K* shells) of cadmium atom, energy release of 2721 ± 7 keV (2742 ± 7 keV) is equal, within the errors, to the energy of the excited levels of ¹⁰⁶Pd with $E_{\text{exc}} = 2718$ keV and 2741 keV [15]. Such a coincidence could give a resonant

enhancement of the $0v2\varepsilon$ capture [27, 28]. The limits on the resonant 2ε processes obtained by fit of the experimental data are presented in Table 2.

The resonant 2β half-life of ¹⁰⁶Cd was estimated by using the general formalism of [27] and calculating the associated nuclear matrix element in a realistic single-particle space using a microscopic nucleon-nucleon interaction. We have used a higher-RPA (random-phase approximation) framework called the multiple-commutator model (MCM) [29, 30]. We have assumed that the spin-parity of the resonant levels is 0⁺. The half-life can be written as:

$$T_{1/2} = 5.561 \cdot 10^{23} \frac{x^2 + 9.42 \text{ eV}^2}{\langle m_v \rangle^2} \text{ yr},$$
 (1)

where x = |Q - E| and $\langle m_{\nu} \rangle$ (the effective Majorana neutrino mass) are in units of eV. Here Q is the difference in atomic masses between ¹⁰⁶Cd and ¹⁰⁶Pd and E contains the nuclear excitation energy and the hole energies in the atomic s orbitals. The dependence of the half-life on x (Fig. 4) gives a strong motivation for precise measurements of the atomic masses' difference between ¹⁰⁶Cd and ¹⁰⁶Pd, and properties (spin and parity) of the 2718 and 2741 keV excited levels of ¹⁰⁶Pd.

Fig. 4. Calculated dependence of the half-life of 106 Cd relatively to the resonant 0v2 ε capture to excited levels of 106 Pd on parameter *x* (see text) for different values of the effective neutrino mass.

Conclusions

An experiment using a cadmium tungstate crystal scintillator enriched in ¹⁰⁶Cd up to 66 % is in progress in the DAMA R&D set-up at the Laboratori Nazionali del Gran Sasso of INFN. After 1320 h of data taking we have estimated radioactive contamination of the ¹⁰⁶CdWO₄ scintillator relatively to U/Th (total α activity) on the level of $\approx 2 \text{ mBq/kg}$. The main components of background of the detector

are β active ^{113m}Cd (112 Bq/kg) and ²⁰⁷Bi (1.3 mBq/kg). By analysis of the experimental data we have set limits on 2β processes in ¹⁰⁶Cd on the level of 10^{19} - 10^{20} yr. A possible resonant enhancement of $0\nu2\epsilon$ processes was estimated in the

framework of QRPA approach. A sensitivity of the experiment to different 2β processes in ¹⁰⁶Cd after ≈ 3 yr of measurements is expected to be on the level of $\sim 10^{21}$ yr.

REFERENCES

- Audi G., Wapstra A.H., Thibault C. The Ame2003 atomic mass evaluation - (II). Tables, graphs and references // Nucl. Phys. - 2003. - Vol. A729. - P. 337 - 676.
- Bohlke J.K. et al. Isotopic compositions of the elements, 2001 // J. Phys. Chem. Ref. Data. - 2005. -Vol. 34. - P. 57 - 67.
- Danevich F.A. et al. Investigation of β⁺β⁺ and β⁺/EC decay of ¹⁰⁶Cd // Z. Phys. 1996. Vol. A355. P. 433 437.
- Barabash A.S. et al. Theoretical and experimental investigation of the double beta processes in ¹⁰⁶Cd // Nucl. Phys. - 1996. - Vol. A604. - P. 115 - 128.
- Belli P. et al. New limits on 2β⁺ decay processes in ¹⁰⁶Cd // Astropart. Phys. - 1999. - Vol. 10. - P. 115 -120.
- Danevich F.A. et al. Search for 2β decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment // Phys. Rev. - 2003. - Vol. C68. -P. 035501, 12 p.
- Rukhadze N.I. et al. Search for double beta decay of ¹⁰⁶Cd in TGV-2 experiment // J. Phys. Conf. Ser. -2010. - Vol. 203. - P. 012072, 3 p.
- Suhonen J., Civitarese O. Theoretical results on the double positron decay of ¹⁰⁶Cd // Phys. Lett. - 2001. -Vol. B497. - P. 221 - 227.
- Hirsch M. et al. Nuclear structure calculation of β⁺β⁺, β⁺/EC and EC/EC decay matrix elements // Z. Phys. -1994. - Vol. A347. - P. 151 - 160.
- Staudt A., Muto K., Klapdor-Kleingrothaus H.V. Nuclear matrix elements for double positron emission // Phys. Lett. - 1991. - Vol. B268. - P. 312 - 316.
- Toivanen J., Suhonen J. Study of several double-betadecaying nuclei using the renormalized proton-neutron quasiparticle random-phase approximation // Phys. Rev. - 1997. - Vol. C55. - P. 2314 - 2323.
- 12. *Stoica S., Klapdor-Kleingrothaus H.V.* Calculation of the $\beta^+\beta^+$, β^+/EC and EC/EC half-lives for ¹⁰⁶Cd with the second quasi random phase approximation method // Eur. Phys. J. 2003. Vol. A17. P. 529 536.
- 13. *Shukla A. et al.* Two-neutrino positron double-beta decay of ¹⁰⁶Cd for the $0^+ \rightarrow 0^+$ transition // Eur. Phys. J. 2005. Vol. A23. P. 235 242.
- 14. Domin P., Kovalenko S., Šimkovic F., Semenov S.V. Neutrino accompanied $\beta^{\pm}\beta^{\pm}$, β^{+}/EC and EC/EC processes within single state dominance hypothesis // Nucl. Phys. - 2005. - Vol. A753. - P. 337 - 363.

- 15. ENSDF at NNDC site, http://www.nndc.bnl.gov/.
- 16. *Belli P. et al.* Search for double- β decay processes in ¹⁰⁸Cd and ¹¹⁴Cd with the help of the low-background CdWO₄ crystal scintillator // Eur. Phys. J. 2008. Vol. A36. P. 167 170.
- 17. Danevich F.A. et al. α activity of natural tungsten isotopes // Phys. Rev. - 2003. - Vol. C67. - P. 014310, 8 p.
- Danevich F.A. et al. Beta decay of ¹¹³Cd // Phys. At. Nucl. - 1996. - Vol. 59. - P. 1 - 5.
- Belli P. et al. Investigation of β decay of ¹¹³Cd // Phys. Rev. - 2007. - Vol. C76. - P. 064603, 10 p.
- 20. *Belli P. et al.* Development of enriched $^{106}CdWO_4$ crystal scintillators to search for double β decay processes in ^{106}Cd // Nucl. Instrum. Meth. 2010. Vol. A615. P. 301 306.
- Fazzini T. et al. Pulse-shape discrimination with CdWO₄ crystal scintillators // Nucl. Instrum. Meth. -1998. - Vol. A410. - P. 213 - 219.
- 22. Bardelli L. et al. Further study of CdWO₄ crystal scintillators as detectors for high sensitivity 2β experiments: Scintillation properties and pulse-shape discrimination // Nucl. Instrum. Meth. - 2006. -Vol. A569. - P. 743 - 753.
- 23. *Brudanin V.B. et al.* Search for double electron capture of ¹⁰⁶Cd in TGV-2 experiment // Bull. Russ. Ac. Sci. Phys. 2006. Vol. 70. P. 316-321.
- 24. *Danevich F.A. et al.* The research of 2β decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators // Phys. Lett. 1995. Vol. B344. P. 72 78.
- 25. Danevich F.A. et al. Quest for double beta decay of ¹⁶⁰Gd and Ce isotopes // Nucl. Phys. 2001. Vol. A694. P. 375 391.
- 26. Nelson W.R. et al. The EGS4 code system // SLAC-Report-265, Stanford, 1985, 398 p.
- 27. Bernabeu J., de Rujula A., Jarlskog C. Neutrinoless double electron capture as a tool to measure the electron neutrino mass // Nucl. Phys. - 1983. -Vol. B223. - P. 15 - 28.
- Sujkowski Z., Wycech S. Neutrinoless double electron capture: A tool to search for Majorana neutrinos // Phys. Rev. - 2004. - Vol. C70. - P. 052501 - 5 p.
- 29. Suhonen J. Calculation of allowed and first-forbidden beta-decay transitions of odd-odd nuclei // Nucl. Phys.
 - 1993. - Vol. A563. - P. 205 - 224.
- Civitarese O., Suhonen J. Two-neutrino double-beta decay to excited one- and two-phonon states // Nucl. Phys. - 1994. - Vol. A575. - P. 251 - 268.

П. Беллі, Р. Бернабей, Р. С. Бойко, В. Б. Бруданін, Ф. Каппелла, В. Карачіоло, Р. Черуллі, Д. М. Черняк, Ф. А. Даневич, С. д'Анджело, А. Є. Досовицький, Є. Н. Галашов, А. Інчікітті, В. В. Кобичев, С. С. Нагорний, Ф. Ноццолі, Б. М. Кропив'янський, В. М. Кудовбенко, А. Л. Міхлін, А. С. Ніколайко, Д. В. Пода, Р. Б. Подвіянюк, О. Г. Поліщук, Д. Проспері, В. Н. Шлегель, Ю. Г. Стенін, Й. Сухонен, В. І. Третяк, Я. В. Васильєв

ПЕРШІ РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТУ ПО ПОШУКУ 2β-РОЗПАДУ ¹⁰⁶Cd ЗА ДОПОМОГОЮ КРИСТАЛІЧНИХ СЦИНТИЛЯТОРІВ ¹⁰⁶CdWO₄

Експеримент по пошуку 2β-процесів у ¹⁰⁶Cd за допомогою кристалічних сцинтиляторів ¹⁰⁶CdWO₄ (з масою 215 г), збагачених ¹⁰⁶Cd до 66 %, проходить у Національній лабораторії Гран Сассо Національного інституту ядерної фізики (Італія). Після накопичення даних протягом 1320 годин отримано обмеження на періоди напіврозпаду для подвійних бета-процесів у ¹⁰⁶Cd на рівні 10¹⁹ - 10²⁰ років, зокрема (усі результати даються з 90 %-ною довірчою ймовірністю): $T_{1/2}(0v2\varepsilon) > 3,6 \cdot 10^{20}$ років, $T_{1/2}(2v\varepsilon\beta^+) > 7,2 \cdot 10^{19}$ років та $T_{1/2}(2v2\beta^+) > 2,5 \cdot 10^{20}$ років. Резонансні 0v2ε процеси обмежені як $T_{1/2}(0v2K) > 1,4 \cdot 10^{20}$ років та $T_{1/2}(0vLK) > 3,2 \cdot 10^{20}$ років. Можливе резонансне підсилення 0v2є процесів розраховане в рамках моделі QRPA. *Ключові слова*: подвійний бета-розпад, ¹⁰⁶Cd, кристалічний сцинтилятор CdWO₄.

П. Белли, Р. Бернабей, Р. С. Бойко, В. Б. Бруданин, Ф. Каппелла, В. Карачиоло, Р. Черулли, Д. М. Черняк, Ф. А. Даневич, С. д'Анджело, А. Е. Досовицкий, Е. Н. Галашов, А. Інчикитти, В. В. Кобычев, С. С. Нагорный, Ф. Ноццоли, Б. Н. Кропивянский, В. М. Кудовбенко, А. Л. Михлин, А. С. Николайко, Д. В. Пода, Р. Б. Подвиянюк, О. Г. Полищук, Д. Проспери, В. Н. Шлегель, Ю. Г. Стенин, Й. Сухонен, В. И. Третяк, Я. В. Васильев

ПЕРВЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА ПО ПОИСКУ 2β-РАСПАДА ¹⁰⁶Cd С ПОМОЩЬЮ КРИСТАЛЛИЧЕСКИХ СЦИНТИЛЛЯТОРОВ ¹⁰⁶CdWO₄

Эксперимент по поиску 2 β -процессов в ¹⁰⁶Cd с помощью кристаллических сцинтилляторов ¹⁰⁶CdWO₄ (с массой 215 г), обогащенных ¹⁰⁶Cd до 66 %, проходит в Национальной лаборатории Гран Сассо Национального института ядерной физики (Италия). После накопления данных на протяжении 1320 ч получены ограничения на период полураспада для двойных бета-процессов в ¹⁰⁶Cd на уровне 10¹⁹ - 10²⁰ лет, в частности (все результаты даются с 90 %-ной доверительной вероятностью): $T_{1/2}(0v2\varepsilon) > 3,6 \cdot 10^{20}$ лет, $T_{1/2}(2v\varepsilon\beta^+) > 7,2 \cdot 10^{19}$ лет и $T_{1/2}(2v2\beta^+) > 2,5 \cdot 10^{20}$ лет. Резонансные 0v2 ε процессы ограничены как $T_{1/2}(0v2K) > 1,4 \cdot 10^{20}$ лет и $T_{1/2}(0vLK) > 3,2 \cdot 10^{20}$ лет. Возможное резонансное усиление 0v2 ε процессов оценено в рамках модели QRPA.

Ключевые слова: двойной бета-распад, ¹⁰⁶Cd, кристаллический сцинтиллятор CdWO₄.

Received 07.06.10, revised - 14.03.11.