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In this paper so-called the PDE-method for solution of the Fokker - Planck Equation is proposed to study the beam 
dynamic in the storage ring, where the stochastic cooling is used. This method has been implemented in the new 
FOPLEQ code. The results of numerical calculations obtained by this code are presented. Calculated results by  
PDE-method are compared with other numerical algorithms. Application, stability, convergence and precision of the 
proposed method are discussed. 
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1. Introduction 
 
Fokker - Planck Equation (FPE) is used for a 

large variety of physical phenomena. Formally, the 
FPE equilibrium solution can be easily determined, 
while its time evolution can be analytically obtained 
only in few particular cases. Numerical solution of 
the FPE in general is interesting for a number of 
stochastic physics problems. In this paper, a several 
algorithms are described for numerical solution of 
the FPE. This problem, especially if variable coeffi-
cients are included in the model, is computationally 
very expensive. The solution of FPE often takes a 
long time even with today’s high-speed computers.  

One important problem of accelerator physics is 
to investigate the particle motion under the influence 
of noise [1]. There are various sources of noise: rf 
noise, random power supply ripple, random ground 
motion, rest gas scattering, and quantum fluctuations 
due to radiation. The physical questions one wants to 
answer are: what is the long time behaviour of the 
dynamics, what is the probability for the particle to 
hit the vacuum chamber (and then be lost) (mean 
first passage time), what are the average fluctuations 
of the particle around the periodic design orbit of the 
accelerator (moments), and what is the time evolu-
tion of the probability density (transient and station-
ary behaviour). Mathematically stochastic systems 
can be modelled by stochastic maps (in the time 
discrete case) and by stochastic differential equa-
tions (s.d.e.) in the time continuous case. In the fol-
lowing we will restrict our considerations to s.d.e. 
with Gaussian white noise. Gaussian white noise is a 
very good approximation in many accelerator prob-
lems [1]. The solution of these s.d.e. are Markovian 
diffusion processes which can be described by the 
FPE [2]. The FPE is a Partial Differential Equation 
(PDE) for the probability density and the transition 
probability of these stochastic processes. In general, 
the stochastic equations of motion of a particle in an 
accelerator are very complicated and cannot be 

solved analytically, therefore one has to use numeri-
cal schemes. One way is to consider the s.d.e.  
directly. An alternative way is to investigate and 
solve the FPE. 

The algorithms described in this article involve 
numerical solution of the parabolic PDE. Solving 
PDEs numerically is a well-established topic both in 
mathematics and in applied areas. There exists a vast 
body of literature and there are also many ‘black 
box’ PDE solvers available (e.g. the PDE toolbox of 
Matlab or Mathematic packages). Nevertheless, in 
order to keep the text as self-contained as possible, 
we give here a rough sketch of the numerical method 
used new implementation of “fast-FP” (FP – Fokker 
- Planck). For a more detailed description we refer to 
the following text books [2 - 7]. Theoretical back-
ground is described in [3, 4] for ordinary and para-
bolic differential equations. How to solve these 
equations numerically is described.  

Stochastic momentum cooling is operated to ob-
tain a high-density beam within a small momentum 
spread for experiments. A FPE is used as a powerful 
tool for investigating the stochastic momentum cool-
ing process. 

 
2. Simple method 

 
The FPE is a second order partial differential 

equation, which can be put in the form 
 

2

2

( , ) 1( , ) ( , ) ( , )
2

t z F t z D t z t z
t z z

ψ ψ
⎛ ⎞∂ ∂ ∂

= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
,   (2.1) 

 
where F(t, z) and D(t, z) are known functions which 
may depend, in principle, on time, and ψ(z, t) repre-
sents the unknown solution. It can be easily shown 
that this solution corresponds to the z-coordinate 
probability distribution of a mass less particle whose 
dynamics is described by the Langevin equation.  

The key to the numerical solution of FPE such as 
Eq. (2.1) by using finite difference methods is to  
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discrete ‘space’ z and time t. We only consider the 
discrete set of z-values {0, Δz, 2Δz, ..., NΔz} where 
Δz = a/N for some positive integer N and the t - 
values {0, Δt, 2Δt, nΔt}. Then the partial derivatives 

present in Eq. (2.1) can be numerically approxi-
mated. 

Using numerical approximations the function 
ψ(t, z) at time (n + 1) can be calculated by  

 

1 1 1 1 1 1 1 1 1
2

1 2
2 2

n n n n n
n n i i i i i i i i i i
i i

F F D D Dt
z z

ψ ψ ψ ψ ψψ ψ+ + + − − + + − −⎛ ⎞− − +
= − Δ −⎜ ⎟Δ Δ⎝ ⎠

.                           (2.2) 

 
3. Finite difference method  

 
The simple expression (2.2) does not give a good 

approximation of the real solution ψ. To have more 
accurate approximation of the real solution of FPE 

V. Palleschi [7] proposes to express the solutions of 
Eq. (2.2) as a weighted average (weight θ)of its 
values calculated at times n and n+1 respectively, so 
that Eq. (2.2) reads 
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F F D D Dt
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ψ ψ ψ ψ ψθ

+ + + + +
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+ Δ − +⎜ ⎟Δ Δ⎝ ⎠
.                                 (3.1) 

 
Eq. (3.1) is not directly solvable for ψ if not in 

the trivial case θ = 0, which coincides with 
Eq. (2.2). 

Rearranging terms, Eq. (3.1) can be transformed 
into a matrix equation 

 
1 *n

ik k iA ψ ψ+ = ,                         (3.2) 
 

where Aik is an N x N tri-diagonal matrix and ψ* is 
presented through the ψ and parameter θ [7]. Note 
that in the case θ = 1 we have ψ* = ψn. 

Eq. (3.2 ) can be formally solved for ψn+1 

 
1 1 *n

k ik iAψ ψ+ −= ,                           (3.3) 
 

where Aik
-1 is the inverse of the Aik matrix.  

To have a good spatial resolution for the solution 
ψ a fine spatial mesh more then 100 is needed. So 
the possibility of using fast computer routines is 
particularly important, especially when a large num-
ber of iterations of Eq. (3.3) are needed to follow the 
time evolution of ψk. 

However, due to the particular tri-diagonal form 
of the Aik

-1 matrix (Eq. (3.3), the use of highly CPU 
time consuming matrix inversion routines is not 
necessary. Faster routines are indeed available for 
solving tri-diagonal systems. In the next Section the 
extended numerical algorithm is described. 

 
4. PDE algorithm 

 
The PDE algorithm computes values ψij which 

approximate the true solution ψ by ψij ψ(iΔt, jΔz) for 
i = 0, 1, 2, ... and j = 0, 1, ..., N. The accuracy of this 
approximation depends on the step sizes Δt and Δz. 
The algorithm works by considering a grid row with 

fixed t at a time, starting with an approximation of 
the initial condition: (ψ00, ..., ψ0N). Then, in each 
step, the algorithm uses the approximation (ψi0, ..., 
ψiN) for time iΔt to compute an approximation for 
time (i + 1)Δt. A simple calculation shows that ψ 
solves with homogeneous boundary conditions 
ψ(t, 0) = ψ(t, a) = 0. We denote the computed solu-
tion for time nΔt by ψn = (ψn1, ..., ψiN-1). We do not 
include the outermost points ψn0 and ψnN since these 
are always zero due to the boundary conditions.  

Using approximations given by formulae (2.1) 
one can then write the application of the differential 
operator 

 
2

2

1( , ) ( , )
2

L F z t D z t
z z
∂ ∂

= − +
∂ ∂

               (4.1) 

 
as a matrix vector multiplication: collecting all the 
terms we get 
 

( ), N n
nL n t n z Lψ ψΔ Δ =    n [1, ..., N],       (4.2) 

 
where LN is the tri-diagonal matrix given by 
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The approximations introduced above suggest the 
following approximation to the PDE: 
 

( )
1

1 (1
n n

N n nL
t

ψ ψ θψ θ ψ
+

+−
= + −

Δ
,         (4.5) 

 
where θ Є [0, 1] is a parameter of the method. For 
θ = 0 the derivative on the right hand side is evalu-
ated only for the current approximation ψn. For all 
values θ > 0 the derivative is evaluated for a mixture 
of ψn and ψn+1. In these cases one has to solve a sy-
stem of linear equations to compute ψn+1 from ψn: by 
rearranging the terms in (4.5) one gets 
 

( ) ( )1 (1 )N n N n
i iI t L I t Lθ ψ θ ψ+− Δ = − Δ − ,        (4.6) 

 
where I is the N × N identity matrix. The choice of 
the parameter θ affects the stability of the method. 
Common choices are θ = 0 (Euler scheme), θ = 1/2 
(Crank Nicolson scheme) and θ = 1 (implicit Euler 
scheme). In our own implementation we use the 
Crank Nicolson method. For θ < 1/2 the PDE 
method is stable, independently of the choice of Δt. 
For θ < 1/2 one gets a bound on Δt, depending on 
the smallest of the eigenvalue λi

N. A more detailed 
analysis shows that this eigenvalue is approximately 
equal to −4Di/Δz2 (with exact equality for Fi = 0) 
and thus for θ < 1/2 the method is stable only if 
 

2

max2 (1 2 )
zt

D θ
Δ

Δ <
−

.                          (4.7) 

 

And for θ > ½ the method is stable if 
 

2

max2
zt

D
Δ

Δ < .                             (4.7a) 

 

By using the equations discussed previously the 
numerical calculation procedure is as follows. One 
has to construct the set of the linear algebraic equa-
tions following the Eq. (4.6). Taking into account 
the matrix of operators (4.3) the left side of the 
Eq. (4.6) is written as multiplication of the tri-
diagonal matrix (4.3) on the vector ψi

n+1. The right 
side of Eq. (4.6) can be written as a vector fi, which 
is obtained by multiplying matrix (I - Δt(1 - θ)LN) on 
the known ψi

n
.  In general a tri-diagonal system for N 

unknowns may be written as 
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1 1
2 2;. 1 ;
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2
i i

i
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and  

1 1 1 1

2

n n
n i i i i

i i
W F Ff

z
ψ ψψ + + − −⎛ −

= + − +⎜ Δ⎝
 

 

1 1 1 1
2

2n n n
i i i i i iD D D

z
ψ ψ ψ+ + − − ⎞− +

+ ⎟Δ ⎠
.         (4.10) 

 
W = Δt(1 - θ), T = Δtθ. To solve a tri-diagonal sys-
tem of Eq. (4.8) one can use so called "the tri-
diagonal matrix algorithm" also known as the 
"Thomas algorithm" [10], which is a simplified form 
of Gauss elimination. By Thomas algorithm the 
solution can be obtained in N operations instead of 
N3 required by Gaussian elimination. 
 

5. The constrained interpolation profile (CIP) 
method 

 
The CIP method is well developed and known as 

a general numerical solver for solid, liquid, gas, and 
plasmas. In Refs. [11 - 12] one can find the detailed 
mathematical treatments of CIP method. This 
method is a kind of semi-Lagrangian scheme and 
has been extended to treat incompressible flow in 
the framework of compressible fluid. Since it uses 
primitive Euler representation, it is suitable for mul-
tiphase analysis by the FPE.  

A numerical solver for the FPE in a stochastic 
momentum cooling process by using a CIP method 
is described in details in Refs. [13 - 14]. The main 
idea of the CIP method is that the Eq. (2.1) is sepa-
rated to a coherent phase and an incoherent phase for 
a numerical calculation procedure. The incoherent 
term is written as the diffusion equation, while the 
coherent term is described by the advection equa-
tion. For solving the advection term of the equation 
the CIP method is used.  

The cooling term is described as the advection 
term, and the diffusion term is occurred by the beam 
signal and the amplifier noises. The FPE can be 
numerically solved as the advection-diffusion equa-
tion. The CIP method is a useful scheme in the nu-
merical calculation for the advection equation. Using 
the CIP method one can numerically solve nonlinear 
equations including the advection term with less 
discredited grid numbers. 
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6. Coefficients F and D with the option 
of considering feedback through the beam 

 
Prior to the calculation of the precision and sta-

bility of the FPE numerical solutions given in pre-
vious Sections the coefficients F and D FPE with the 
option considering feedback through the beam must 
be defined. These coefficients characterise an elec-
tronic system of stochastic cooling. Their optimiza-
tion is a subject of many works.  

 

The coherent coefficient F 
The coherent coefficient F depending on the 

momentum δ = dp/p is written by [16] 
 

( )2
2

0
1

,
( ) 2 Re

1 ( , )

n

p k K P
n n

G n
F ef n n Z Z

S n
δ

δ
δ=

⎧ ⎫
= ⎨ ⎬−⎩ ⎭

∑ ,     (6.1) 

 

e – electron charge; Zk, Zp – electrical impedances 
coupled to the beam in the circuit convention, np, nk 
– number of the pick-up and kicker units; f0 – revo-
lution frequency; G(δ, n) – the total gain from the 
beam current at the pick-up to the kicker voltage. It 
is complex voltage gain including the filter and 
phase shifts in the pick-ups and kickers. The gain is 

reduced by factor (1 - S) due to the beam-feedback 
effect. The function S(δ, n) is so-called open-loop 
gain. Summing is done over all harmonics from n1 
to n2. 

The total gain of the system G(δ, n) is defined by 
 

2( , ) ( , ) ( , ) ( )gain mixG n G n M n P nδ δ δ= ,         (6.2) 

 
where Ggain is complex voltage gain: 
 

( )( )( , ) 1 exp 2
2gain const
iG n G i nδ π ηδ= − − ,       (6.3) 

 
Gconst – electrical gain; η - slip factor calculated by 

formula: 2 2

1 1

tr

η
γ γ

= − . Mmix(δ ,n) is mixing between 

pick-up and kicker as a function of the transit time 
ΔTpk between them. 
 

( )0( , ) exp 2mix pk pkM n i nf Tδ π η δ= − Δ .          (6.4) 

 
P(n) is sensitivity factor of pick-up or kicker elec-
trodes inputted in the program. 

S(δ, n) is the open-loop gain: 
 

 

( )22
0( , ) ( , ) ( , ) ( , )p k p k gain mix btfS n ef n n Z Z G n M n B n P nδ δ δ δ= .                      (6.5) 

 
Here Bbtf(δ, n) is beam transfer function, which is 

calculated summing over all momentum spread and 
harmonics by formula 

 

( , )btfB n
n K E
π ψδ ∂

= − +
∂

 

(6.6) 
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δ
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ψ δ δ
ω δ ω δ=

+Δ Δ ≠
Δ − Δ∑ , 

Δω – is a frequency shifts due to momentum devia-
tion and harmonic: ( ) 0, 2n nfω δ π ηδΔ = . K is  

constant parameter: 0
0

12
1

K f
E

γπη
γ

=
+

. 

The incoherent coefficient D 
The incoherent coefficient D given in ref. [16, 

17] consists of two noise power components. One is 
the amplifier noise, and the other the beam noise. 
The D is written by 

 

( ) ( ) 22 2 42 2
02

0 2 22
1 1

,2 ( )( , )
2

1 ( , ) ( ) 1 ( , )

n n
p k P K

k K
n n n n

G ne f n n Z ZG n
D kTf n Z

S n P n n S n

δπ ψ δδ
δ

δ δ= =

⎡ ⎤
⎢ ⎥= ⋅ +

Κ⎢ ⎥− ⋅ −⎣ ⎦
∑ ∑ ,                (6.7) 

 
k is Boltzmann’s constant; T is the temperature of 
the electronic devise (K); ZP and ZK are the imped-
ances of a pick-up and a kicker; e – electron charge. 
One can see that the noise power components pro-
portional to the gain G2 of system and open-loop 
gain S. If one does not want to take the feedback by 
the beam into account, one should just set S(δ, n)= 0 
into the code.  

For simulations the latest parameters of the sto-

chastic cooling system, which is planned to be used in 
the CR [15], are used. The parameters necessary here 
for the coefficients are summarized in the Table. 
Fig. 1 shows calculated for these parameters inco-
herent coefficient. 

It is necessary to notice that incoherent coeffi-
cient D oscillates because of oscillations ψ function 
at equilibrium state. But in case of PDE method such 
oscillates can be decreased. 
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Main parameters of the Cooling System 
and the CR machine for antiprotons 

 

Number of particles, N 108 

Kinetic energy, E0, MeV/u 3000 
Initial momentum spread, Δp/p (1σ), % 0.35 
Transition energy, γtr 3.69 
Frequency slip factor of the ring, η -0.017 
Frequency slip factor: pick-up- kicker, ηpk -0.041
Ring circumference, C, m 221.45 
Path length from pick-up to kicker, P, m 81 
Bandpass, (fmin-fmax), GHz 1-2 
Minimum harmonic number, n1 800 
Maximum harmonic number, n2 1600 
Effective temperature for amplifier noise, K 73
Pick-up impedance, Zp, Ω 720 
Kicker-impedance, Zc, Ω 2880 
Number of pick-ups, np 2 
Number of kickers, nk 2 

 

Fig. 1. Incoherent coefficient D calculated by formula (6.7) 
using antiproton beam parameters given in the Table. 

 
7. Numerical simulation 

(CR, antiproton beam cooling) 
 

This Section presents the results of the stochastic 
cooling process numerically calculated by FOPLEQ 
code, where the all methods presented in the previous 
Sections are implemented. The parameters of the 
stochastic cooling system given in the Table are used. 
This system is planned to be applied in the Collector 
Ring (CR). The coherent and incoherent coefficients 
F and D are calculated by formulae described in Sec-
tion 6. The feed back effect is included in simulations. 

As an example Fig. 2 shows the particle distribu-
tions as a function of energy during the stochastic 
cooling in the CR in every 2 s of cooling time. The 
anti-protons are collected into the central energy of 
the beam due to the stochastic cooling. 

Fig. 2. Psi function evolution in every 2 s. Number of 
channels is 500. Number of particles is 108. Calculated by 
FOPLEQ code (CIP method) for antiproton beam. The 
time step is dt = 1E - 4 s 

 

Fig. 3. Rms energy spread history during cooling in the 
CR. The label “cern” corresponds to the CERN code [17]. 
The labels “cip”, “pde”, “simp” indicate the methods 
implemented in the FOPLEQ code. 

 
Fig. 3 demonstrates the rms momentum spread 

during the cooling process. It is confirmed that the 
numerical solvers (simple, CIP, PDE) used in 
FOPLEQ code quite well represent the result ob-
tained by CERN code. Here the rms energy spread is 
calculated by difference methods, where N is the 
total particle number in the ring. Fig. 3a presents the 
comparison of RMS momentum spread results re-
ceived by difference methods with difference num-
ber of channels. From these figure one can see that 
in case of PDE method it is needed less number of 
channels for the same accuracy.  
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Fig. 3a. Rms energy spread calculates by simple method and CERN code – left;  
PDE method (FOPLEQ code) – right for different number of channels. 

 

Fig. 4. Relative number of particles 
calculated by FOPLEQ code. 

 

Fig. 4 shows the particle number during cooling 
process calculated by CIP, PDE and simple methods. 
The result of the CIP method gives an unphysical 
phenomenon after the long time beam cooling, be-
cause the distribution function has the quite sharp 
distribution at the centre due to the stochastic cooling.  

 

8. Conclusions 
 

A fast and accurate algorithm for numerical solu-
tion of FPE based on the solution of the parabolic 
PDE, where the Crank - Nicholson scheme is used, 
has been discussed in this paper. The special  
FOPLEQ code has been developed to study the beam 
dynamic in storage ring, where the stochastic cooling 
process must be used. In this code the PDE algorithm 
is applied. The stability, convergence and round-off 
errors of the algorithm are studied. The numerical 
results on FPE solution with PDE method are com-
pared with other numerical methods. It was proved 
that the PDE is unconditionally stable and converged. 
This method and technique can be applied to solve 
any fractional (in space and time) PDE. 

As an example in the paper the results of simula-
tion with the FOPLEQ code are given for the sto-
chastic cooling process at the CR storage ring.   

In the near future this work will be extended to 
higher dimensions, and it will be applied to more 
realistic parameters for studying the dynamics of 
particles in storage rings. 
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РОЗВ’ЯЗАННЯ  РІВНЯННЯ  ФОККЕРА - ПЛАНКА  ДЛЯ  ДОСЛІДЖЕННЯ 

СТОХАСТИЧНОГО  ОХОЛОДЖЕННЯ  В  НАКОПИЧУВАЛЬНИХ  КІЛЬЦЯХ 
 

Пропонується так званий чисельний PDE-метод розв’язання рівняння Фоккера - Планка для дослідження 
динаміки пучків у накопичувальних кільцях, де застосовується стохастичне охолодження. Цей метод був вико-
ристаний при розробці нової комп’ютерної програми FOPLEQ. Представлено результати чисельних розрахун-
ків, отримані за допомогою цієї програми. Проведено порівняння цих результатів з результатами інших чисель-
них алгоритмів. Обговорюються питання застосування, стабільності, збіжності та точності запропонованого 
методу. 

Ключові слова: рівняння Фоккера - Планка, стохастичне охолодження, еволюція розподілу частинок. 
 

M. Э. Долинская 
 

РЕШЕНИЕ  УРАВНЕНИЯ  ФОККЕРА - ПЛАНКА  ДЛЯ  ИЗУЧЕНИЯ 
СТОХАСТИЧЕСКОГО  ОХЛАЖДЕНИЯ  В  НАКОПИТЕЛЬНЫХ  КОЛЬЦАХ 

 
Предлагается так называемый численный PDE-метод решения уравнения Фоккера - Планка для изучения 

динамики пучков в накопительном кольце, где используется стохастическое охлаждение. Этот метод был ис-
пользован при разработке новой компьютерной программы FOPLEQ. Представлены результаты численных 
расчетов, полученные с помощью этой программы. Проводится сравнение этих результатов с результатами 
других численных алгоритмов. Обсуждаются вопросы применения, стабильности, сходимости и точности 
предложенного метода. 

Ключевые слова: уравнения Фоккера - Планка, стохастическое охлаждение, эволюция распределения частиц. 
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