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FOKKER - PLANCK EQUATION SOLVER FOR STUDY STOCHASTIC COOLING
IN STORAGES RINGS

In this paper so-called the PDE-method for solution of the Fokker - Planck Equation is proposed to study the beam
dynamic in the storage ring, where the stochastic cooling is used. This method has been implemented in the new
FOPLEQ code. The results of numerical calculations obtained by this code are presented. Calculated results by
PDE-method are compared with other numerical algorithms. Application, stability, convergence and precision of the

proposed method are discussed.
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1. Introduction

Fokker - Planck Equation (FPE) is used for a
large variety of physical phenomena. Formally, the
FPE equilibrium solution can be easily determined,
while its time evolution can be analytically obtained
only in few particular cases. Numerical solution of
the FPE in general is interesting for a number of
stochastic physics problems. In this paper, a several
algorithms are described for numerical solution of
the FPE. This problem, especially if variable coeffi-
cients are included in the model, is computationally
very expensive. The solution of FPE often takes a
long time even with today’s high-speed computers.

One important problem of accelerator physics is
to investigate the particle motion under the influence
of noise [1]. There are various sources of noise: rf
noise, random power supply ripple, random ground
motion, rest gas scattering, and quantum fluctuations
due to radiation. The physical questions one wants to
answer are: what is the long time behaviour of the
dynamics, what is the probability for the particle to
hit the vacuum chamber (and then be lost) (mean
first passage time), what are the average fluctuations
of the particle around the periodic design orbit of the
accelerator (moments), and what is the time evolu-
tion of the probability density (transient and station-
ary behaviour). Mathematically stochastic systems
can be modelled by stochastic maps (in the time
discrete case) and by stochastic differential equa-
tions (s.d.e.) in the time continuous case. In the fol-
lowing we will restrict our considerations to s.d.e.
with Gaussian white noise. Gaussian white noise is a
very good approximation in many accelerator prob-
lems [1]. The solution of these s.d.e. are Markovian
diffusion processes which can be described by the
FPE [2]. The FPE is a Partial Differential Equation
(PDE) for the probability density and the transition
probability of these stochastic processes. In general,
the stochastic equations of motion of a particle in an
accelerator are very complicated and cannot be

solved analytically, therefore one has to use numeri-
cal schemes. One way is to consider the s.d.e.
directly. An alternative way is to investigate and
solve the FPE.

The algorithms described in this article involve
numerical solution of the parabolic PDE. Solving
PDEs numerically is a well-established topic both in
mathematics and in applied areas. There exists a vast
body of literature and there are also many ‘black
box’ PDE solvers available (e.g. the PDE toolbox of
Matlab or Mathematic packages). Nevertheless, in
order to keep the text as self-contained as possible,
we give here a rough sketch of the numerical method
used new implementation of “fast-FP”’ (FP — Fokker
- Planck). For a more detailed description we refer to
the following text books [2 - 7]. Theoretical back-
ground is described in [3, 4] for ordinary and para-
bolic differential equations. How to solve these
equations numerically is described.

Stochastic momentum cooling is operated to ob-
tain a high-density beam within a small momentum
spread for experiments. A FPE is used as a powerful
tool for investigating the stochastic momentum cool-
ing process.

2. Simple method

The FPE is a second order partial differential
equation, which can be put in the form

oy (t,2) _ 10 2.1
= 282213(:,2));//(:,2),( )

—(SZF(I,Z)—

where F(¢, z) and D(¢, z) are known functions which
may depend, in principle, on time, and y(z, f) repre-
sents the unknown solution. It can be easily shown
that this solution corresponds to the z-coordinate
probability distribution of a mass less particle whose
dynamics is described by the Langevin equation.
The key to the numerical solution of FPE such as
Eq. (2.1) by using finite difference methods is to
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discrete ‘space’ z and time ¢#. We only consider the
discrete set of z-values {0, Az, 2Az, ..., NAz} where
Az = a/N for some positive integer N and the t -
values {0, At, 2At, nAt}. Then the partial derivatives

n n
E’+1‘//i+1 — F;—ll//i—l

present in Eq. (2.1) can be numerically approxi-
mated.

Using numerical approximations the function
w(t, z) at time (n + 1) can be calculated by

.n+l — n_At
Vi Vi Az

3. Finite difference method

The simple expression (2.2) does not give a good
approximation of the real solution y. To have more
accurate approximation of the real solution of FPE

1 Dy, —2Dy" +D " ] )

. o 2.2)

V. Palleschi [7] proposes to express the solutions of
Eq. (2.2) as a weighted average (weight #)of its
values calculated at times n and n+1 respectively, so
that Eq. (2.2) reads

n+l _
l//i l//A 2AZ

D,

"y (1 _ H)At(— Favin— v i 1D,y —2Dy + Dy,

2 AZ J+

+OAt _F;'Jrll//i):l_E—ll//injl +l

2Az 2

Eq. (3.1) is not directly solvable for y if not in

the trivial case # = 0, which coincides with
Eq. (2.2).

Rearranging terms, Eq. (3.1) can be transformed
into a matrix equation

n+l

Ay = l//i* ) (3.2)
where 4; is an N x N tri-diagonal matrix and 1//* is
presented through the w and parameter 6 [7]. Note
that in the case 6 = 1 we have y = y/".
Eq. (3.2) can be formally solved for y"'
Vi = A (33
where 4,7 is the inverse of the 4;; matrix.

To have a good spatial resolution for the solution
w a fine spatial mesh more then 100 is needed. So
the possibility of using fast computer routines is
particularly important, especially when a large num-
ber of iterations of Eq. (3.3) are needed to follow the
time evolution of ;.

However, due to the particular tri-diagonal form
of the Ay" matrix (Eq. (3.3), the use of highly CPU
time consuming matrix inversion routines is not
necessary. Faster routines are indeed available for
solving tri-diagonal systems. In the next Section the
extended numerical algorithm is described.

4. PDE algorithm

The PDE algorithm computes values y; which
approximate the true solution w by w; w(iAt, jAz) for
i=0,1,2,...andj=0, 1, ..., N. The accuracy of this
approximation depends on the step sizes Af and Az.
The algorithm works by considering a grid row with
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fixed ¢ at a time, starting with an approximation of
the initial condition: (g, ..., wony). Then, in each
step, the algorithm uses the approximation (wy, ...,
wiv) for time iA¢ to compute an approximation for
time (i + 1)Az. A simple calculation shows that
solves with homogeneous boundary conditions
w(t, 0) = w(t, a) = 0. We denote the computed solu-
tion for time nAdt by v, = (Wu1, ..., Wiv.1). We do not
include the outermost points o and y,n since these
are always zero due to the boundary conditions.

Using approximations given by formulae (2.1)
one can then write the application of the differential
operator

d 10’
L=——F ~—D 4.1
5 P +5 5D (4.1)

as a matrix vector multiplication: collecting all the
terms we get

Ly (nAt,nAz) =Ly n[l,..,N], (42)
where L" is the tri-diagonal matrix given by
d p 0 0
- nody p, O (4.3)
0 rn d p
0 0 r;\" dN
where
F:.* 1—
r,:_$+ L,.ie[2,N],
Di
d,=——%, i e[l,N], “.4)
E, D,
=il i , l,N—l
Pi= o ope SV
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The approximations introduced above suggest the
following approximation to the PDE:

MZLN(QV/"H"'O_H)V/"’

v 4.5)

where 6 € [0, 1] is a parameter of the method. For
6 = 0 the derivative on the right hand side is evalu-
ated only for the current approximation y". For all
values 8 > 0 the derivative is evaluated for a mixture
of " and y"*'. In these cases one has to solve a sy-
stem of linear equations to compute "' from y": by
rearranging the terms in (4.5) one gets

(1-A0L Yy =(1-A(1-0)L" )y, (4.6)
where [ is the N x N identity matrix. The choice of
the parameter 6 affects the stability of the method.
Common choices are @ = 0 (Euler scheme), § = 1/2
(Crank Nicolson scheme) and € = 1 (implicit Euler
scheme). In our own implementation we use the
Crank Nicolson method. For 6 < 1/2 the PDE
method is stable, independently of the choice of At.
For 6 < 1/2 one gets a bound on At, depending on
the smallest of the eigenvalue 4,". A more detailed
analysis shows that this eigenvalue is approximately
equal to —4D;/Az* (with exact equality for F; = 0)
and thus for 8 < 1/2 the method is stable only if

2
A<D (4.7)
2D, (1-20)
And for 0 > % the method is stable if
2
At < Az . (4.7a)
2Dmax

By using the equations discussed previously the
numerical calculation procedure is as follows. One
has to construct the set of the linear algebraic equa-
tions following the Eq. (4.6). Taking into account
the matrix of operators (4.3) the left side of the
Eq. (4.6) is written as multiplication of the tri-
diagonal matrix (4.3) on the vector y;""'. The right
side of Eq. (4.6) can be written as a vector f;, which
is obtained by multiplying matrix (I - At(1 - §)L") on
the known ;" In general a tri-diagonal system for N
unknowns may be written as

by 0 0y (A
a b, ¢ 0 '//;H _ S , (4.8)
0 a b ¢ |y .
0 0 a b))

where

a,-=—z(D;;+i);. b,.=1+T£f2;
2\ Az Az Az

C, _ _Z Di+21 _ F;+1 ; (49)
2\ Az Az
and
n 4 E+1V/ir«l+1 _F;—ll//in—l
=y, +—| ——+
fi=vi+s ( ~
n D Win — ZZVZ/I' +D v J ' (4.10)

W= At(1 - 0), T = At6. To solve a tri-diagonal sys-
tem of Eq. (4.8) one can use so called "the tri-
diagonal matrix algorithm" also known as the
"Thomas algorithm" [10], which is a simplified form
of Gauss elimination. By Thomas algorithm the
solution can be obtained in N operations instead of
N required by Gaussian elimination.

5. The constrained interpolation profile (CIP)
method

The CIP method is well developed and known as
a general numerical solver for solid, liquid, gas, and
plasmas. In Refs. [11 - 12] one can find the detailed
mathematical treatments of CIP method. This
method is a kind of semi-Lagrangian scheme and
has been extended to treat incompressible flow in
the framework of compressible fluid. Since it uses
primitive Euler representation, it is suitable for mul-
tiphase analysis by the FPE.

A numerical solver for the FPE in a stochastic
momentum cooling process by using a CIP method
is described in details in Refs. [13 - 14]. The main
idea of the CIP method is that the Eq. (2.1) is sepa-
rated to a coherent phase and an incoherent phase for
a numerical calculation procedure. The incoherent
term is written as the diffusion equation, while the
coherent term is described by the advection equa-
tion. For solving the advection term of the equation
the CIP method is used.

The cooling term is described as the advection
term, and the diffusion term is occurred by the beam
signal and the amplifier noises. The FPE can be
numerically solved as the advection-diffusion equa-
tion. The CIP method is a useful scheme in the nu-
merical calculation for the advection equation. Using
the CIP method one can numerically solve nonlinear
equations including the advection term with less
discredited grid numbers.
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6. Coefficients F and D with the option
of considering feedback through the beam

Prior to the calculation of the precision and sta-
bility of the FPE numerical solutions given in pre-
vious Sections the coefficients F and D FPE with the
option considering feedback through the beam must
be defined. These coefficients characterise an elec-
tronic system of stochastic cooling. Their optimiza-
tion is a subject of many works.

The coherent coefficient F
The coherent coefficient F depending on the
momentum ¢ = dp/p is written by [16]

F(8)=2efy \[nnZ.Z, ZR

n=nl

5}1

{ } (6.1)
1-S(5,n)

e — electron charge; Z;, Z, — electrical impedances
coupled to the beam in the circuit convention, n,, ny
— number of the pick-up and kicker units; f; — revo-
lution frequency; G(J, n) — the total gain from the
beam current at the pick-up to the kicker voltage. It
is complex voltage gain including the filter and
phase shifts in the pick-ups and kickers. The gain is

S(8,n)=ef?\[n,n2,Z,G,,,(5,m)M,, (5,n)B,, (5,n)P(n) .

Here By/(0, n) is beam transfer function, which is
calculated summing over all momentum spread and
harmonics by formula

T 0
BGm == e
(6.6)
Omax 1
+AEAn dv ! Oy %0,
555 dE (Ao(S,n)— AaX(5,y.,n))
n2 ‘G(é‘,n)‘z

reduced by factor (1 - S) due to the beam-feedback
effect. The function S(J, n) is so-called open-loop
gain. Summing is done over all harmonics from nl
to n2.

The total gain of the system G(J, n) is defined by

G(o,n)=G,,,(6,mM,, (5, n)P(n)*, (6.2)
where Gg,, s complex voltage gain:
Gy (6,m)==G,,, (1 - exp(—i27rm]§)) , (6.3)

G.ons: — electrical gain; # - slip factor calculated by

1
—
2

pick-up and kicker as a function of the transit time
AT, between them.

formula: 7 = Lz— M,,ix(6 ,n) is mixing between

M, (6,n)= exp( i27mﬁ,l7pk5ATpk).

mix

(6.4)

P(n) is sensitivity factor of pick-up or kicker elec-
trodes inputted in the program.
S(d, n) is the open-loop gain:

(6.5)

Aw — is a frequency shifts due to momentum devia-
tion and harmonic: Aw(8,n)=2znfns. K is
constant parameter: |K | 2rn fo—— o1 El

The incoherent coefficient D

The incoherent coefficient D given in ref. [16,
17] consists of two noise power components. One is
the amplifier noise, and the other the beam noise.
The D is written by

2
27é’ fo'n 0, Z,Z,p (8) & ‘G(é‘,n)‘ (6.7)

D(8)=2-| kIfinZ, Y

n=nl

k is Boltzmann’s constant; 7 is the temperature of
the electronic devise (K); Zp and Zg are the imped-
ances of a pick-up and a kicker; e — electron charge.
One can see that the noise power components pro-
portional to the gain G of system and open-loop
gain S. If one does not want to take the feedback by
the beam into account, one should just set S(o, n)= 0
into the code.

For simulations the latest parameters of the sto-
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1-S(8,n)[ - P(n)*

‘K‘ n:nln‘l_S(é"n)‘z

chastic cooling system, which is planned to be used in
the CR [15], are used. The parameters necessary here
for the coefficients are summarized in the Table.
Fig. 1 shows calculated for these parameters inco-
herent coefficient.

It is necessary to notice that incoherent coeffi-
cient D oscillates because of oscillations y function
at equilibrium state. But in case of PDE method such
oscillates can be decreased.
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Main parameters of the Cooling System
and the CR machine for antiprotons

Number of particles, N 108
Kinetic energy, Ej, MeV/u 3000
Initial momentum spread, Ap/p (15), % 0.35
Transition energy, Y 3.69
Frequency slip factor of the ring, n -0.017
Frequency slip factor: pick-up- kicker, 1, -0.041
Ring circumference, C, m 221.45
Path length from pick-up to kicker, P, m 81
Bandpass, (fiin-fiuax), GHZ 1-2
Minimum harmonic number, n; 800
Maximum harmonic number, n, 1600

Effective temperature for amplifier noise, K 73

Pick-up impedance, Z,, Q 720
Kicker-impedance, Z., Q 2880
Number of pick-ups, n, 2
Number of kickers, n 2
10'7 L L L
10" 4
@
N 0
L1005
2
a
» |
10" 4
o 0s
Gain= 110 35s
10" T T T
0,010 0,005 0,000 0,005 0,010

dp/p
Fig. 1. Incoherent coefficient D calculated by formula (6.7)
using antiproton beam parameters given in the Table.

7. Numerical simulation
(CR, antiproton beam cooling)

This Section presents the results of the stochastic
cooling process numerically calculated by FOPLEQ
code, where the all methods presented in the previous
Sections are implemented. The parameters of the
stochastic cooling system given in the Table are used.
This system is planned to be applied in the Collector
Ring (CR). The coherent and incoherent coefficients
F and D are calculated by formulae described in Sec-
tion 6. The feed back effect is included in simulations.

As an example Fig. 2 shows the particle distribu-
tions as a function of energy during the stochastic
cooling in the CR in every 2 s of cooling time. The
anti-protons are collected into the central energy of
the beam due to the stochastic cooling.

25| T T v T ' I

20+

154

q;lw.J\N.-".r\f",
=
I

T T
0.000 0.005

Aplp
Fig. 2. Psi function evolution in every 2 s. Number of
channels is 500. Number of particles is 10°. Calculated by
FOPLEQ code (CIP method) for antiproton beam. The
time stepisdt = 1E-4s

-0.010 -0.005 0.010

dt =10"; N = 400 channels  CR cool. parameters

107 T T T T T
—Cerm

dp/p (rms)

Gain=10"

10* T T T T T
0 5 10 15 20 25 30

ts
Fig. 3. Rms energy spread history during cooling in the
CR. The label “cern” corresponds to the CERN code [17].
The labels “cip”, “pde”, “simp” indicate the methods
implemented in the FOPLEQ code.

Fig. 3 demonstrates the rms momentum spread
during the cooling process. It is confirmed that the
numerical solvers (simple, CIP, PDE) used in
FOPLEQ code quite well represent the result ob-
tained by CERN code. Here the rms energy spread is
calculated by difference methods, where N is the
total particle number in the ring. Fig. 3a presents the
comparison of RMS momentum spread results re-
ceived by difference methods with difference num-
ber of channels. From these figure one can see that
in case of PDE method it is needed less number of
channels for the same accuracy.
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PDE (0=0), simp, CERN code

0,01 5 . : ;
Gain=2-107 N= 400 ... 4000
107 7
I
: \
= ™ N=400
g .
1074 R =
N=4000
107 ; , : .
0 10 Time,s 20

001 PDE (?=0.5) :
N=200 ... 4000
52
1074
@
<
=
o 8
= ™
5 T
10 \
v T v T
0 10 Time , § 20

Fig. 3a. Rms energy spread calculates by simple method and CERN code — /ef;
PDE method (FOPLEQ code) — right for different number of channels.

T , T v ] . ] X T
1,000 ez
0
1}
[¥]
£ 0,995
[v]
a
5]
E 0,990
E
3
c
1]
2 n
® “----clp
o 0985
[ pde
simp
0,880 R
0 5 10 15 20 25 30

ts
Fig. 4. Relative number of particles
calculated by FOPLEQ code.

Fig. 4 shows the particle number during cooling
process calculated by CIP, PDE and simple methods.
The result of the CIP method gives an unphysical
phenomenon after the long time beam cooling, be-
cause the distribution function has the quite sharp
distribution at the centre due to the stochastic cooling.

8. Conclusions

A fast and accurate algorithm for numerical solu-
tion of FPE based on the solution of the parabolic
PDE, where the Crank - Nicholson scheme is used,
has been discussed in this paper. The special
FOPLEQ code has been developed to study the beam
dynamic in storage ring, where the stochastic cooling
process must be used. In this code the PDE algorithm
is applied. The stability, convergence and round-off
errors of the algorithm are studied. The numerical
results on FPE solution with PDE method are com-
pared with other numerical methods. It was proved
that the PDE is unconditionally stable and converged.
This method and technique can be applied to solve
any fractional (in space and time) PDE.

As an example in the paper the results of simula-
tion with the FOPLEQ code are given for the sto-
chastic cooling process at the CR storage ring.

In the near future this work will be extended to
higher dimensions, and it will be applied to more
realistic parameters for studying the dynamics of
particles in storage rings.
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M. E. lonincbka

PO3B’A3AHHA PIBHAHHA ®OKKEPA - IIVIAHKA JJIA JOCIIKEHHSA
CTOXACTHYHOI'O OXOJIOJKEHHA B HAKOIIMYYBAJIBHUX KUIBIAX

IIpononyerbes Tak 3BaHui yncenbHuit PDE-MeTon po3s’szanus piBHsHHA Pokkepa - [InaHka [uis OCHiKEHHS
JUHAMIKH Iy4KiB Y HAKOIMYYBaIbHUX KIJBLSX, /1€ 3aCTOCOBYETHCS CTOXacTHUHE oxosopkeHHs. Lleit meTon OyB BHKO-
pucTanuii mpu po3po6bii HoBoi koM totepHoi mporpamu FOPLEQ. IlpencTaBineHo pe3ysbTaTu YHCENIbHUX PO3paxyH-
KiB, OTpUMaHi 3a JOIOMOrolo 1iei nporpamu. IIpoBeaeHo NOPIBHAHHSA LUX PE3YNbTATIB 3 Pe3yJIbTaTaMH iHIIUX YHCEIIb-
HUX anroputMiB. OOGroBOPIOIOTHCS NMUTAHHS 3aCTOCYBAaHHS, CTaOLIBHOCTI, 301KHOCTI Ta TOYHOCTI 3alPONOHOBAHOIO
METOLY.

Knrouoei crosa: piBasHHEA Pokkepa - [TnaHka, CTOXacTHYHE 0XOJI0KEHHS, CBOJIIOLIS PO3IIOALTY YaCTHHOK.

M. 3. lonrunckast

PEIIEHUE YPABHEHUSA ®OKKEPA - IIVTAHKA JJIsA U3YYEHUSA
CTOXACTHYECKOI'O OXJIAXKJAEHUA B HAKOIIUTEJIBHBIX KOJIBHAX

[Ipennaraercs Tak Ha3biBaeMbld ynciieHHbIl PDE-meton peuienus ypaBHenus @okkepa - [lnanka nns uzydeHus
JUHAMUKY IIY4YKOB B HAKONUTEIHLHOM KOJbLE, IJIe UCHONb3yeTCA CTOXACTUUECKOE OXJIaXKIeHUE. DTOT METOH ObLI HC-
HOJIb30BaH IpU pa3zpaboTke HOBOH kommbroTepHO# mporpammsl FOPLEQ. IlpencraBieHbl pe3yibTaThl YHUCICHHBIX
pacyeToB, MOJIyYEHHBIE C MOMOLIBIO 3TOH MporpaMmsl. IIpoBoAHMTCS CpaBHEHHME 3TUX DPE3yJbTaTOB C Pe3yIbTaTaMH
JPYTUX YUCIECHHBIX aaropuTMoB. OOCYXIaloTCS BOIPOCH! NPUMEHEHUs, CTAOWIBHOCTH, CXOAUMOCTH U TOYHOCTH
MPEAJI0KEHHOI0 METO/1a.
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