A. T. Rudchik, K. A. Chercas, A. A. Rudchik, E. I. Koshchy, S. Kliczewski, K. Rusek, V. A. Plujko, O. A. Ponkratenko, S. Yu. Mezhevych, Val. M. Pirnak, R. Sudak, J. Choiński, B. Czech, A. Szczurek

THE ⁶Li(¹⁸O, ¹⁷O)⁷Li REACTION MECHANISMS AND ⁷Li + ¹⁷O POTENTIAL

Angular distributions of the ${}^{6}\text{Li}({}^{18}\text{O}, {}^{17}\text{O}){}^{7}\text{Li}$ reaction were measured at $E_{\text{lab}}({}^{18}\text{O}) = 114 \text{ MeV}$ for ground and excited states of exit nuclei. The data were analyzed within the coupled-reaction-channels method (CRC). The ⁶Li + ¹⁸O elastic and inelastic scattering channels as well as the simplest one- and two-step reactions were included in the coupled-reaction-channels scheme. In CRC calculations, the ${}^{6}Li + {}^{18}O$ potential with parameters deduced from the elastic scattering data, was used for the entrance reaction channel. The spectroscopic reaction parameters are calculated within the translational-invariant shell model. The ⁷Li + ¹⁷O potential parameters were deduced by fitting ⁶Li(¹⁸O, ¹⁷O)⁷Li reaction data. Isotopic differences of the ⁷Li + ¹⁷O, ⁷Li + ¹⁸O and ⁷Li + ¹⁶O potential, well as as the

reaction mechanisms are studied.

Keywords: heavy-ion reactions, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.