А. Т. Рудчик, Р. М. Зелинский, А. А. Рудчик, Вал. Н. Пирнак, С. Кличевски, Е. И. Кощий, К. Русек, В. А. Плюйко, О. А. Понкратенко, С. Ю. Межевич, А. П. Ильин, В. В. Улещенко, Р. Сюдак, Я. Хоиньски, Б. Чех, А. Щурек

УПРУГОЕ И НЕУПРУГОЕ РАССЕЯНИЕ ИОНОВ 18 О ЯДРАМИ 6 Li ПРИ ЭНЕРГИИ 114 МэВ И ИЗОТОПИЧЕСКИЕ ОТЛИЧИЯ ВЗАИМОДЕЙСТВИЯ ЯДЕР 6,7 Li + 18 O И 6 Li + 16,18 O

Получены новые экспериментальные данные дифференциальных сечений упругого и неупругого рассеяния ядер 6 Li + 18 O при энергии $E_{\rm лаб}(^{18}{\rm O})=114$ МэВ в эксперименте с одновременным измерением дифференциальных сечений реакций 6 Li($^{18}{\rm O}$, X) с выходом ядер $^{16,17,19}{\rm O}$ + 8,7,5 Li, $^{14,15,16,17}{\rm N}$ + 10,9,8,7 Ве и $^{12,13,14}{\rm C}$ + $^{12,11,10}{\rm B}$. Экспериментальные данные проанализированы по оптической модели и методу связанных каналов реакций. Определены параметры потенциала взаимодействия ядер 6 Li + $^{18}{\rm O}$, параметры деформации ядер 6 Li и $^{18}{\rm O}$ и механизмы рассеяния этих ядер. Исследованы изотопические отличия рассеяния ядер $^{6,7}{\rm Li}$ + $^{16,18}{\rm O}$ и параметров потенциалов взаимодейтвия их.

Ключевые слова: рассеяние тяжелых ионов, оптическая модель, метод связанных каналов реакций, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.