A. Ya. Dzyublik

TRIGGERING OF ¹⁷⁸Hf^{m2} BY PHOTOINDUCED ELECTRON TRANSITION

We considered the NEET (nuclear excitation by electron transition) as a possible triggering mechanism of the isomer ¹⁷⁸Hf^{m2} during ionization of the L₃ atomic shell by x-rays. This 16⁺ isomer is assumed to be excited into an intermediate state 15⁻ by E1 electronic transition between M₅ and L₃ shells. Simple nonrelativistic formulas are derived for the NEET probability. The estimations show the probability to be less than the experimental data of [1] by one order of magnitude. The intermediate level is found to decay bypassing the isomeric level 16⁺, if the nucleus attributes a triaxial shape in the 15⁻ state and, besides, there exists a level 13⁻ shifted with respect to 15⁻ by 400 keV. We have shown also that the NEET cross section $\sigma_{\text{NEET}}(E)$ as a function of the energy of x-ray photons *E*, has to accept constant value above the L₃ photoionization threshold in contrast to narrow peak observed by [1].

Keywords: nuclear isomers, NEET, induced nuclear decay, x-rays, hafnium, nuclear spectra.