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STOCHASTIC RESONANCE AT DIFFUSION OVER A POTENTIAL BARRIER

The general problem of diffusive overcoming of a single-well potential barrier in the presence of a periodic time
forcing is studied within the generalized Langevin approach. We found that the thermal diffusion over the barrier can be
resonantly accelerated at some frequency of the periodic modulation that is inversely proportional to the mean first-
passage time for the motion in the absence of the time-modulation. The resonant activation effect is rather insensitive to
the correlation time of the random force term in the Langevin equation of motion.
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Introduction

Nonlinear systems with a complex dynamics may
show significantly different response on an external
periodic forcing than the corresponding linear
systems. In this respect one can mention stochastic
resonance phenomenon [1], when the response of
the nonlinear system on the harmonic perturbation is
resonantly activated under some optimal level of a
noise. The resonant activation of the system occurs
when the frequency of the modulation, ®, is close to
the Kramers’ w=r, of the

transitions from one potential well to another one.
One can observe and measure stochastic resonance
phenomenon in different physical systems like a ring
laser [2], magnetic systems [3], optical bistable
systems [4] and others.

In the present paper, our aim is to study thermal
non-Markovian diffusion over a one-humped poten-
tial barrier in the presence of periodic time
modulation.

escape rate, 7,

Thermal non-Markovian diffusion
over a potential barrier

We start from the generalized Langevin equation
of motion for a single dimensionless coordinate g(¢)
diffusively overcoming the potential barrier in the
presence of a periodic force F, ()= osin(wt) [5]:

oE . . |
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where M is the constant mass parameter, x(z—¢")

Mi=-

is the memory kernel of the retarded friction force
and {(¢) is the random force. The potential energy

E,(q) is schematically shown in Fig.1 and

presents a single-well barrier formed by a smooth
joining at ¢ =¢' of the potential minimum oscillator

with the inverted oscillator,
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where E, is the height of the barrier (Fig. 1).

Epu(q), MeV
m

B
LI I
I
|
i
A :
u T T
S el
-\ |
-
=] i i
o 1 2 3

p
Fig. 1. A potential energy landscape defined by a smooth
joining of a ground-state oscillator with an inverted
saddle-point oscillator (2) with g, being the minimum at

the point A, ¢, being the position of the top (point B) of
the parabolic barrier.

A noise term {(¢) in Eq. (1) is assumed to be

Gaussian distributed with zero mean and correlation
function related to the memory kernel «(z—1¢'):

(LOL))=Tx(r~1"), )

where T is the temperature of the system. Below we
shall assume that the memory kernel is given by

K(t—t')=1<oexp(—|t_rt'j, 4)

where T is a correlation time.
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Unperturbed diffusion over the barrier

At the beginning, we investigated the non-Mar-
kovian diffusive dynamics for the infinitely slow
(w=0) time modulation and calculated a time-
dependent escape rate r(¢). For that, the Langevin
equation (1) was solved numerically by generating a
bunch of the trajectories {g,(¢)},i=1,..., N, with the
following initial conditions:

70)=gp (3.(0)=0, (4°(0)=T/M,(5)
where N, is a total number of the trajectories

involved in the calculations.
The escape rate over the barrier was defined by

1 dP(¢
() =0, ©)
P(t) dt
where P(t) is the survival probability, i.e.,

probability of finding the system on the left from

the top of the barrier till the time ¢ :
N(1)
P(t)y=——=. 7
(1) N, (7

Here, N(¢) is a number of the trajectories which do

not reach the top of the barrier before the time 7. In
the numerical calculations, all quantities of the
dimension of energy is measured in units of the
temperature 7 of the system, quantities of the

dimension of time are taken in units of VM /T . For
the system’s parameters we adopted the following
values:

q'=12, ¢,=1.6,

q, =1, ®, =6.75,

o =959, E, =515 x,=1920, (8)
which are typical for diffusion-like studies of fission
of highly excited atomic nuclei, see Ref. [6].

In Fig. 2, the typical time behavior of the escape

rate 7(¢) is plotted for two values of the correlation

time T: T=0.005 (when the memory effects in the
diffusive dynamics Egs. (1) - (6) are quite weak) and
©=0.025 (when the memory effects are fairly
strong), see [6].

It is seen from Fig. 2 that initially the escape is
affected by transient effects, when the survival
probability P(¢) deviates strongly from the
exponential form. With time, the escape process
becomes more and more stationary giving rise to the
corresponding saturation of the rate r(¢) of Eq. (6)
establishing of a quasistationary probability flow
over the barrier. Qualitatively, one can describe

typical time evolution of the escape rate as

r(t)=1,(1-exp[~t/t,,]). ©))
1(t)
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Fig. 2. The time dependence of the escape rate r(¢) (see

Eq. (6)) for the non-Markovian diffusion dynamics
Egs. (1) - (6) calculated for two values of the correlation
time T: T=0.005 (when the memory effects in the
diffusive dynamics are quite weak) and T=0.025 (when
the memory effects are fairly strong), see [6].

In both cases a duration of the transient time,
is almost the same (¢, =50) for quite weak
and fairly large memory effects in the diffusion
process. However, a saturation value, r,, of the

t

tran 2

escape rate is significantly different. It is because of
the memory effect for the large values of the
correlation time 7.
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Fig. 3. The saturation value 7, of the escape rate (see

Eq. (9)) vs the correlation time T, measuring the strength
of the memory effects in the non-Markovian diffusion
dynamics (see Egs. (1) - (6)). The dotted line represents the
Kramers’ result of Eq. (10) for the escape rate calculated
with the T-dependent friction coefficient of Eq. (11).
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In Fig. 3, we showed how the value 7, of Eq. (9)

depends on the strength of the memory effects in the
diffusive dynamics Eq. (1). Dotted line in Fig. 3
represents the famous Kramers’ result for the escape
rate [6]

2
po=0) Y o exp(—ﬂ), (10)
2n 2M o, 2M o, T

where the friction coefficient y is assumed to be
T -dependent [5]

K,T

1+(x, / M)T (b

Y(t) =

In paper [5], the friction coefficient of Eq. (11) is
used within the Fermi-liquid approach to the nuclear
collective motion with T being the relaxation time
of the collective excitations. There, y(t) is taken as

an interpolation formula for the T -dependent
friction coefficient between the first-sound regime
(i. e., the regime of quite frequent collisions between

nucleons, /x,/Mt<<1, when Y(T)e 1) and the
zero-sound regime (i. e., the regime of fairly rare
collisions between nucleons, /x,/M1T>>1, when

Y(T) < 1/7).

We see that the memory effects significantly
suppress the value of the escape rate in the saturation
regime of probability flow over the potential barrier.
Initially (i. e., at relatively small values of the
correlation time 7 ) the suppression is mainly caused
by the growing role of the usual friction in the non-
Markovian diffusion motion Egs. (1) - (6). As is
followed from Fig. 3, in this case the escape rate at
saturation 7, (9) may be quite well approximated by

the Kramers’ formula, see Eq. (10). On the other
hand, at relatively large correlation times T, the
effect of the friction on the diffusion over the barrier
is negligibly weak and the escape rate’s suppression
appears exclusively due to the additional
conservative force, see Ref. [6]. As a result, the
stationary value of the escape rate deviates
substantially from the Kramers’ escape rate Eq. (10)
at the fairly strong memory effects in the diffusive
motion across the barrier. Note also that, as shown in
[8] and [9], the characteristics of the escape process
depend much on the shapes of the potential barrier.
Thus, for more complicated shapes (than the
parabolic one shown in Fig. 1) of the potential
energy E  (g), the Kramers’ model [7] cannot be

pot

applied.

Periodic perturbation effect on the thermal
non-Markovian diffusion over the barrier

Now we will study the dynamics over the barrier
Egs. (1) - (6) in the presence of the external harmonic
force. We will assume that the amplitude o of the
force asin(mt) in Eq. (1) is so small (ot =0.05) that
still the reaching the top of the barrier is caused
exclusively by diffusive nature of the dynamics. In
Fig. 4, we calculated the typical dependencies of the

mean first-passage time T,,, (as a mean time of the

first crossing of the top of the barrier) on the
frequency ® of the external harmonic force. The
calculations were performed for the weak, T=0.05
(lower curve in Fig. 4) and strong, T=0.025 (upper
curve in Fig. 4) memory effects in the non-Markovian
diffusive motion over the barrier.
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Fig. 4. The mean first-passage time 7, of the non-

Markovian diffusion motion of Egs. (1) - (6) is given as a
function of the frequency ® of the harmonic time
perturbation at two values of the correlation time T =0.05
(lower curve) and t©=0.025 (upper curve).

In both cases the mean first-passage time T
non-monotonically depends on the frequency of the
perturbation that is character for the stochastic
resonance phenomenon observed in a number of
different physical systems. From Fig. 4 one can
conclude that diffusion over the potential barrier in
the presence of the harmonic time perturbation is
maximally accelerated at some definite so to say
resonant frequency ®,,, of the perturbation,

15
T, (0= 0) ’

(12)

res

In fact, the quantity t,. (w=0) presents the
characteristic time scale for the diffusion dynamics
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of Eq. (1). In the case of adiabatically slow time
variations of the harmonic force, << ®,, , one can
approximately use osin(wt) = ¢ and the diffusion
over the barrier is slightly accelerated. As a result,
the mean first-passage time 1, (®) is smaller than
the corresponding unperturbed value . (©=0).
The same feature is also observed at the fairly large
modulation’s frequencies, when ®>>®, . In this
case the harmonic perturbation osin(®w?) may be
treated as a random noise term with the zero mean
value and variance o’ . Such a new stochastic term
will lead to additional acceleration of the diffusion

over the barrier.

Conclusions

time modulation. We have calculated both the mean
first-passage time 7,,, and the escape rate r(¢) over
the barrier. These two quantities have been found to
be sensitive to the relative strength of memory effects
in the diffusive dynamics Egs. (1) - (6), measured by
the correlation time T. Having calculated the mean
first-passage time t,., for different values of the
frequency ® of the modulation, we have found that
the sinusoidal perturbation accelerates the diffusion
over the barrier, see Fig. 4. The maximal (resonant)
acceleration is achieved at the w=w,,, , where ®,, is
inversely proportional to the mean first-passage time
in the absence of the modulation, see Eq. (12). We
have seen that a value of the resonant activation over
the barrier 7, (®,,)/T,, (®=0) remains prac-

tically the same for the quite weak as well as for the

We have investigated how model dynamics of the fairly strong memory effects in the diffusive
non-Markovian diffusion over the single-well dynamics.
parabolic barrier is affected by the external periodic
REFERENCES

1. Benzi R., Sutera A., Vulpiani A. The mechanism of
stochastic resonance // J. Phys. A. - 1981. - Vol. 14. -
P. L453.

2. McNamara B., Wiesenfeld K., Roy R. Observation of
stochastic resonance in a ring laser // Phys. Rev. Lett.
- 1988. - Vol. 60. - P. 2626.

3. Grigorenko A., Nikitin P., Slavin A., Zhou P. Expe-
rimental observation of magnetostochastic resonance
//']. Appl. Phys. - 1994. - Vol. 76. - P. 6335.

4. Dykman M.1L, Velikovich A.L., Golubev G.P. et al.
Stochastic resonance in an all-optical passive bistable
system // JETP Lett. - 1991. - Vol. 53. - P. 193.

5. Kolomietz V.M., Radionov S.V. Non-Markovian
diffusion over a potential barrier in the presence of

periodic time modulation // Phys. Rev. - 2011. -
Vol. E84. - P. 051123.

6. Kolomietz V.M., Radionov S.V., Shlomo S. Memory
effects on descent from the nuclear fission barrier //
Phys. Rev. -2001. - Vol. C64. - P. 054302.

7. Kramers H.A. Brownian motion in a field of force and
the diffusion model of chemical reactions // Physica. -
1940. - Vol. 7. - P. 284.

8. Hofimann H., Ivanyuk F.A. Mean first passage time for
nuclear fission and the emission of light particles //
Phys. Rev. Lett. - 2003. - Vol. 90. - P. 132701.

9. Hofmann H., Magner A.G. Mean first passage time for
potentials having structure // Phys. Rev. - 2003. -
Vol. C68. - P. 14606.

B. M. Koaomieun, C. B. Pagionos
CTOXACTHYHUMN PE3OHAHC IIPU JU®Y3Ii YEPE3 MOTEHIIAJIHAN BAP’EP

VY pamkax y3araJbHEHOTO JIAH)KEBEHIBCHKOTO IIJXOIy JOCHIKYETHCS 3arajibHa rnpodieMa andy3iiHOro mpoxoa-
JKEHHS 4epe3 OJHOSIMHUHN MOTCHIIANEHUN Oap’ep y MPUCYTHOCTI MEPiOAWYHOTO YacoBOTO 30YpEeHHsS. 3HAWIEHO, 0
TeruioBa Au(y3is depe3 Oap’ep Moxke OyTH pe30HAHCHO-TIPHUCKOPEHA MPH AEAKii 9acTOTi MepiOANIHOTO 30YpEHHs, SKa
o0epHEeHO TpOoMOopLiiHa 10 CepemHBOr0 Yacy IMEepIIOoro MEepeTHHY BEPIIMHHU IMOTEHIIANbHOro Oap’epa mpH pyci Oe3
30ypeHHsl. Y CTaHOBJICHO, 1110 SIBUIlIE Pe30HAaHCHOT akTuBaii qudys3il cabko 3alIeUTh BiJ] 4acy KOpeIsLii BUIIaJKOBOT
CHJIN Y JIAaH)KEBEHIBCHKOMY PiBHSHHI PYyXY.

Kniouosi crosa: croxacTHaHU# pe3oHaHC, TUQY3is, HOTeHIiaTbHNN Oap’ep, piBHAHHS JlamkeBeHa, epeKTH mam sTi.

B. M. Kosomuen, C. B. Paguonos
CTOXACTHYECKHMI PE3OHAHC IPH JU®®Y3UU YEPE3 NMOTEHIUAJIBHbIA BAPHEP

B pamkax 000O0IIEHHOTO JTAHXKEBCHOBCKOI'O IOAXOJa Hccienyercs oOmas mpobiiemMa auddy3noHHOTO Mpo-
XOXJICHUS Yepe3 OIHOSMHBIN MOTCHIUAIBHBIA Oaphep B MPUCYTCTBUU IEPUOJUYECKOTO BPEMEHHOTO BO3MYIICHUS.
Hatineno, uro temnoBas aud¢ys3us depe3 Oapbep MOXKET OBITh PE30HAHCHO-YCKOpPEHA TP HEKOTOPOH dYacToTe
MEPUOAMIECKOTO BO3MYILEHHUS, KOTOpas OOpaTHO MPOMOPLHMOHAIBLHA CPEAHEMY BPEMEHH MEPBOrO MepeceueHHs
BEpLIMHBI Oapbepa Mpu IBIKCHUH 0e3 BO3MYIICHHUS. Y CTAHOBIICHO, YTO SIBICHUE PE30HAHCHOW akTuBauuu quddys3un
€11a00 3aBUCHT OT BPEMEHH KOPPEISIMU CIy4aiiHOM CHUIIbI B JTAH)KEBEHOBCKOM YPaBHEHHHU JIBUYKCHHUS.

Kniouesvie cnosa: croxactudeckuid pe3oHaHC, Ouddy3nsd, NOTCHUHANBHBINA Oapbep, ypaBHeHue JlamkeBeHa,
3¢ GEeKTh TaMsITH.
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