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HOW  DOES  THE  CARBON  FUSION  REACTION  HAPPEN  IN  STARS? 

 
The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated 

reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar  
objects, such as explosions on the surface of neutron stars, white dwarf (type Ia) supernovae, and massive stellar evolu-
tion. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our 
studies: 1) an upper limit for the 12C + 12C fusion cross sections, 2) measurement of the 12C + 12C at deep sub-barrier 
energies, 3) a new measurement of the 12C(12C, n) reaction. The outlook for the studies of the astrophysical heavy-ion 
fusion reactions will also be presented.  
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1. Introduction 
 

In 1960 Almqvist, Kuehner and Bromley disco-
vered several resonances in collisions between 12C 
nuclei. For at least three energies, Ec.m. = 5.68, 6.00 
and 6.32 MeV, they observed increased yields for 
the reaction products: p, α, n and γ. These reson-
ances have characteristic widths of about 100 keV 
and were interpreted as signatures for the formation 
of nuclear molecules [1 - 3]. In the following years, 
the discoveries of such resonances continued down 
to the lowest energies. For instance, the most recent 
published measurement of the 12C + 12C fusion re-
ported a strong resonance at Ec.m. = 2.14 MeV [4]. 

Apart from its interest to nuclear reaction studies, 
the 12C + 12C fusion reaction also plays a crucial role 
in a number of important astrophysical scenarios, 
such as explosions on the surface of neutron stars, 
white dwarf (type Ia) supernovae, and massive stellar 
evolution [5]. For astrophysics, the important energy 
range extends from 1 to 3 MeV in the center of mass 
frame, which is only partially covered by experi-
ments. Therefore, an extrapolation is the only re-
source available to obtain the reaction rate for astro-
physical applications. The currently adopted reaction 
rate is established based on the modified S* factor 

 

( ) ( ). . . . . . . .
. .

87.21* exp 0.46c m c m c m c m
c m

S E E E E
E

⎛ ⎞= σ +⎜ ⎟
⎝ ⎠

 

(1) 
An S* factor of 3 · 1016 MeV · b was obtained by 

fitting the data measured by Patterson [6], Spinka [7] 

and Becker [8]. This averaged value was extrapo-
lated towards lower energies by assuming that the 
averaged S* factor remains constant at sub-barrier 
energies [6, 9]. At present, there is nothing known 
about the energies and strengths of resonances in the 
energy region below Ec.m. = 2 MeV. Besides this un-
certainty, the recent study of fusion hindrance has 
suggested a new extrapolation which is smaller than 
the adopted one [5, 10]. Therefore, our understand-
ing of the 12C + 12C fusion rate is highly uncertain.  

 
2. The experimental efforts at Notre Dame 

 
To aid in the understanding of this reaction, the 

carbon fusion project at Notre Dame was established 
in 2007 with the aim of measuring the reaction cross 
section and decay branches at low energies as well 
as providing a reliable extrapolation into the ener-
gies that cannot be reached by experiment. In this 
paper, we report on three studies: 1) an upper limit 
for the 12C + 12C total fusion cross section at astro-
physical energies, 2) the measurement of the 
12C + 12C fusion cross sections at deep sub-barrier 
energies, 3) a measurement of the neutron branching 
at low-energy with an improved extrapolation based 
on the mirror reaction channel, 12C(12C, p).  

 
2.1. An upper limit 

for the 12C + 12C fusion cross sections 
 

The primary goal of this work was to study the 
carbon isotope fusion reactions, which display a 
much smoother excitation function than 12C + 12C, at 
sub-barrier energies in hope to find a better model  
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for the general behavior of 12C + 12C at these ener-
gies. The modeling of 12C + 12C itself is complicated 
by the potential existence of large resonances, whe-
reas this complication appears to be absent from the 
isotope reactions. For example, the most recently 
published measurement at energies below 3 MeV 
center-of-mass (the energy range of astrophysical 
interest is 1 - 3 MeV) by Spillane et al. shows a 
large, narrow resonance at 2.14 MeV [4]. An even 
stronger resonance at 1.5 MeV is proposed by Coop-
er et al. based on comparisons between superburst 
models and observations [10]. By looking at the iso-
tope systems, one can effectively remove the added 
complication from the resonant structure and more 
easily study the general behavior of the 12C + 12C 
fusion reaction. 

The 12C + 13C fusion reaction was measured at 

Notre Dame with the goal of extending the already 
existing data from [12] to lower energies. The 
11 MV FN tandem accelerator at Notre Dame was 
used to provide beams of 13C ions with intensities up 
to 1 pμA for bombardment on a thick graphite tar-
get. The details of the measurement are given in 
[13], but the main idea was to measure 
13C(12C, p)24Na by counting the beta decays from the 
residual 24Na (t1/2 = 15 h) using the beta-gamma 
coincidence technique. After correcting for the con-
tributions from the other decay branches, the total 
fusion cross section measurements were extended 
down below 2.7 MeV c.m. where the cross section 
value drops to 20 nb (a factor of 50 less than the 
previous lowest measurement). The new data shows 
good agreement with the data from [12] in the over-
lapping energies (Fig. 1). 

 
  S*, MeV · b 

 
                                                                          Ec.m., MeV

 σ, mb 

 
                                                                     1/Ec.m., MeV-1 

 

Fig. 1. (Left) The experimental S* factors of three carbon-isotope fusion reactions around or below the Coulomb bar-
rier: 12C + 12C (red stars) [8], 12C+13C from Ref. [13] (black points) and Ref. [12] (green squares), and 13C + 13C [14] 
(magenta triangles). The systematic uncertainties, 30 % for the 12C + 12C data, 15 % for the 13C + 13C data, and 30 % for 
the 12C + 13C data from Ref. [12] [12C + 13C (Dayras)], are not shown in the graph. The 12C+13C data reported in 
Ref. [13] [12C + 13C(ND)] are dominated by a 20 % systematic uncertainty, which is included in this graph. (Right) The 
experimental cross sections of three carbon-isotope fusion reactions above the Coulomb barrier: 12C + 12C (red points) 
[15], 12C + 13C (green squares) [15] and 13C + 13C [14] (magenta triangles). (See color Figure online.) 

 
When the 13C + 13C and 12C + 12C excitation func-

tions from [14] and [8], respectively, are plotted to-
gether with the 12C + 13C using the cross section fac-
tor defined by Eq. (1), which is traditionally used to 
study the 12C + 12C fusion reaction [6], a striking 
correlation is realized. The 12C + 12C cross section is 
suppressed relative to the isotope fusion reactions 
except at the resonant energies where the cross sec-
tions are in an excellent agreement! The two isotope 
systems agree with each other within the systematic 
uncertainties of the measurements. Considering a 
systematic uncertainty of 15 - 30 % for the data from 
Refs. [8, 12, 14] (not shown in Fig. 1), the major 
resonant cross sections of 12C + 12C (Er = 3.1, 4.3, 
4.9, 5.7, 6.0, and 6.3 MeV) match remarkably well 
with the fusion cross sections of the other two car-
bon isotope combinations within their quoted uncer-

tainties. This correlation between 12C + 12C and the 
isotope reactions holds from the highest measured 
energy, ~40 MeV, down to the lowest measured 
energy, 2.7 MeV, in Ref. [8]. In other words, the 
isotope fusion reactions provide an upper bound on 
the 12C + 12C fusion within the measured energy 
ranges [13].  

Since the isotope excitation functions behave re-
latively smoothly with energy, they are much more 
easily modeled. In order to extrapolate the isotope 
reactions down to the lower, unmeasured energies, a 
coupled-channels calculation was performed based 
on the M3Y+repulsion double-folding potential with 
ingoing-wave-boundary-conditions (IWBC). The 
details of the calculation are given in [16]. The re-
sults of the calculation agree with the experimental 
data within the systematic uncertainty over the  
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Even though the particle-gamma coincidence 
provides a much cleaner background than any past 
experiments using either particle detectors or Ge 
detectors, there are transitions that only emit par-
ticles without gamma-rays (e.g. Transition to ground 
states of fusion residues) for which the solenoid 
spectrometer seems to be a better approach. In this 
approach, both the target and detector are placed on 
the axis of a uniform magnetic field while the light 
charged particles generated at the target move on 
helical orbits and are bent back to the axis after one 
cyclotron period. The position-sensitive silicon de-
tector array, located on the axis, records energy, tar-
get-to-detector position and TOF with respect to 
beam pulses. The position and the energy of the par-
ticles translate into the desired information of excita-
tion energy and center-of-mass angle. A study of the 
12C + 12C fusion reaction has been done at Ec.m. = 4, 5 
and 6 MeV using one of the existing solenoids of the 
TWINSOL facility at Notre Dame. Two 1 × 5 cm2 
1-D position sensitive detectors were placed around 
the axis at the upstream direction with respect to the 
20 μg/cm2 thick carbon foil. The closest distance 
between the detectors and target were set as 8 cm 
initially and latter increased to 23 cm to cover longer 
distance. To stop the scattered 12C particles from 
reaching the detectors, a 5.7 μm Aluminum degrader 
was placed on the surface of detectors. The spectrum 
of the detected energy vs. position plot shown in 
Fig. 4 indicates that a clean observation of the transi-
tions to the ground state of 23Na has been achieved. 
We are working on the beam collimation system 
with a hope to get clean observation of the α0 chan-
nel in the near future. Meanwhile, it is necessary to 
look for funding to build a complete silicon array so 
that the measurement can be efficiently carried out 
at lower energies. 

Because of the complication of the decay schemes 
of the fusion residues, it is a great challenge to get the 
total fusion cross section from the observable decay 
channels. For example, in the past, gamma ray mea-
surements were only focused on the cross sections to 
two characteristic lines, 440 keV for 23Na and 
1634 keV for 20Ne. The charged particle measure-
ments were limited to the channels above the huge 
background incurred by the H/D contaminants in tar-
get. In most analyses in the past, the total 12C + 12C 
fusion cross sections were obtained by a simple sum-
mation of the observed decay channels. Using a statis-
tical model, we have estimated the contribution from 
those unobserved channels. The theoretical result was 
compared with the predicted cross section based on 
the partial cross sections measured by Becker et al. 
[8]. The results shown in Figs. 5 and 6 suggest that 
the total fusion cross section in the range of 1 to 3 
MeV can be determined by combining the infor- 

 

  Ratio 

 
                                                                           Ec.m., MeV 
 

Fig. 5. The ratio of the sum of several observable proton 
channels to the total cross section of the proton channel 
(σptot). In the graph, σp0 is the cross section for the proton 
channel to the ground state of 23Na. σp(440), σp(2391), σp(2640) 
and σp(2982) are corresponding to the cross sections of the 
gamma transitions of 23Na, (440 keV 0), (2390 keV 0), 
(2639 keV 0) and (2982 keV 0), respectively. The 
black points are the predicted ratio based on the observed 
proton cross sections by Becker et al. [8] and the known 
level scheme. The red line (Theory 1) is a prediction by 
TALYS [21]. In the experimental data, there are various 
energy limits for different channels because of the com-
plicated background. To simulate this effect, the experi-
mental energy limits are included in the TALYS calcula-
tion and the result is shown as the blue line (Theory 2). 
(See color Figure online.) 

 
  Ratio 

 
                                                                           Ec.m., MeV 
 

Fig. 6. The ratio of the sum of two observable alpha 
channels to the total cross section of the alpha channel. In 
the graph, σα0 is the cross section for the alpha channel to 
the ground state of 20Ne. σα(1634) is the cross sections for 
the gamma transition of 20Ne, (1634 keV 0). The blue 
and red lines are the predications with TALYS [21]. See 
the caption of Fig. 5 for more details. (See color Figure 
online.) 
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The reaction cross section was measured from 
6.5 MeV down to 3.1 MeV using 12C beams pro-
duced with the FN tandem accelerator at Notre 
Dame. Two different approaches have been used to 
study the neutron channel. The first approach is to 
detect the 23Mg (t1/2 = 11.317 s) β+ decay using a 
plastic scintillator. In the experiment, a thin carbon 
target (thickness 20 μg/cm2) was used, and the 23Mg 
reaction product was collected using an aluminum 
catcher placed behind the target. After 20 s of target 
irradiation, the 23Mg β+ decays were counted for 40 s 
after which the process was repeated until sufficient 
statistics were achieved. The combination of high 
background yield arising from the hydrogen conta-
minant in targets and low fusion yield prevented 
useful measurements below 3.5 MeV. The second 
method is to detect the neutron directly with a highly 
efficient 3He detector array. To minimize the hydro-
gen contaminant, a 1-mm thick HOPG target was 
used. A LN2 cooled cooper tube was placed just  
before the target to prevent hydrogen contamination 
from the vacuum. With these measurements, the 
measurement was pushed down to 3.1 MeV.  

We also developed a new extrapolation method 
to accommodate the complicated resonant feature in 
the 12C + 12C fusion reaction and provide a more re-
liable prediction for the cross sections at the energies 
below the experimental limit. In this new method, 
we take the advantage that any neutron branch ni (i 
is corresponding to the ith excited state in 23Mg) is 
exactly the mirror reaction channel for the proton 
branch pi (i is corresponding to the ith excited state in 
23Na). Any resonance existing in the 12C + 12C chan-
nel would imprint itself in both proton and the cor-
responding neutron channels. The code EMPIRE 
[24] was used to calculate the corresponding ratios 
between the mirror branches, pi and ni. Then consi-
dering all the open ni’s for a given energy (below 
4.6 MeV, only n0 and n1 are open), a total neutron 
production cross section is generated based on the 
corresponding pi production cross sections. The pre-
dicted cross sections based on the proton channels 
are shown in Fig. 7. The results show remarkable 
accuracy with the measured neutron data and extend 
into the experimentally inaccessible energy range 
(see Fig. 2). For most data points, the deviations  
between the prediction and the measurement are less 
than 40 %. This discrepancy is not surprising be-
cause the optical models used in EMPIRE only de-
scribe the average penetrabilties for the pi + 23Na and 
ni + 23Mg. The predicted resonance at 3.4 MeV has 
been confirmed by our recent measurement using 

neutron detection. Two more sharp resonances are 
predicted at energies below 3 MeV based on the  
experimental data from Ref. [17]. The corresponding 
new reaction rate is about a factor of 2 of what Day-
ras has recommended. This leads to the conclusion 
that the 12C(12C, n) role in the weak s-process of 
Population I massive stars is quite limited compared 
with the major neutron source, 22Ne(α, n). The im-
pact to other relevant astrophysical scenarios, such 
as the nucleosynthesis in metal poor massive stars 
and explosive carbon burning, is being studied. 

 
3. Summary and outlook 

 
The study of the 12C + 12C fusion process at deep 

sub-barrier energies represents a main challenge in 
nuclear astrophysics. At Notre Dame, we have estab-
lished an upper limit for the 12C + 12C fusion cross 
sections within the astrophysical energy range. We 
are developing two different approaches which will 
enable us to precisely study this important fusion 
process at lowest energies than have ever been 
reached in any past experiments. We also collabo-
rate with collaborators at the Research Center for 
Nuclear Physics (RCNP) at Osaka University on a 
complimentary approach of using the 24Mg(α, α’) 
reaction to search the resonances in 24Mg which may 
contribute to the 12C fusion cross section at astro-
physical energies. The new measurement of the 
12C(12C, n) channel and the new extrapolation tech-
nique reduced the existing ambiguities in the weak 
s-process for Population I massive stars. 

Besides 12C + 12C, the 12C + 16O and 16O + 16O fu-
sion reactions are also important for nuclear astro-
physics. At sub-barrier energies, there are still many 
mysteries, such as the molecular resonance, hin-
drance effect and correlation within the isotope sys-
tems, which can only be addressed with better expe-
rimental data and better theory. The new 5 MV sin-
gle end accelerator with an Electron Cyclotron Re-
sonance source will soon provide high-current heavy 
ion beams at Notre Dame. With improvements of the 
detection techniques discussed in this paper, better 
experimental data can be expected in the near future.   
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С. Л. Джіанг,  K. E. Рем,  С. Й. Лін,  Е. Браун 
 

ЯК  ВІДБУВАЄТЬСЯ  НА  ЗІРКАХ  РЕАКЦІЯ  ЗЛИТТЯ  ЯДЕР  ВУГЛЕЦЮ? 
 

Реакція злиття 12C + 12C є однією з найбільш важливих в еволюції зірок. Через складний механізм реакції  
існує велика невизначеність в її швидкості, що обмежує рівень нашого розуміння різних зоряних об’єктів, таких 
як еволюція масивних зірок, вибухи нейтронних зірок і супернових при наростанні маси білих карликових  
зірок. У статті наведено огляд задач, що виникають при вивченні згоряння вуглецю. Наведено також результати 
недавніх наших досліджень: 1) верхня межа перетину реакції злиття 12C + 12C, 2) вимірювання реакції 12C + 12C 
при глибокопідбар’єрних енергіях, 3) нові вимірювання реакції 12C + 12C. Представлено також огляд досліджень 
по злиттю важких іонів. 

Ключові слова: 12C + 12C, реакція злиття, еволюція зірок. 
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С. Л. Джианг,  K. E. Рем,  С. Й. Лин,  Е. Браун 

 
КАК  ПРОИСХОДИТ  НА  ЗВЕЗДАХ  РЕАКЦИЯ  СЛИЯНИЯ  ЯДЕР  УГЛЕРОДА? 

 
Реакция слияния 12C + 12C является одной из наиболее важных в эволюции звезд. Из-за сложного механизма 

реакции существует большая неопределенность в ее скорости, что ограничивает уровень нашего понимания 
различных звездных объектов, таких как эволюция массивных звезд, взрывы нейтронных звезд и суперновых 
при нарастании массы белых карликовых звезд. В статье приведен обзор задач, возникающих при изучении 
сгорания углерода. Приведены также результаты недавних наших исследований: 1) верхний предел сечения 
реакции слияния 12C + 12C, 2) измерение реакции 12C + 12C при глубокоподбарьерных энергиях, 3) новые изме-
рения реакции 12C + 12C. Представлен также обзор исследований по слиянию тяжелых ионов. 

Ключевые слова: 12C + 12C, реакция слияния, эволюция звезд. 
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