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COULOMB INTERACTION EFFECTS IN MANY-PARTICLE NUCLEAR REACTIONS 

WITH TWO-FRAGMENT RESONANCE FORMATION 
 

The modified final-state interaction theory taking into consideration the Coulomb interaction between two-fragment 

nuclear resonance decay products and accompanying reaction products is developed including the case of near-

threshold resonances. The branching ratio change is also studied for the near-threshold resonance 7Li*(Ex = 7.45 MeV), 

which is formed in the reaction 7Li(α, α)7Li* at Eα = 27.2 MeV.  
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Introduction 
 

In this article we study the possible deviations 
(with respect to the properties of the resonance in the 
isolated pair) of the parameters of a two-body 
resonance in the Coulomb field of a third particle, 
especially in the case of reactions with the near-
threshold resonance formation. The reactions of the 
type 

*1 1 2 3a A b       
 

have been extensively investigated lately in a 
number of both theoretical and experimental studies 
1 - 9. The influence of accompanying particle on 
the resonance decay is known as the PSI (post-
collision interaction) effect 2, 8. This influence is 
most pronounced in the cases when the reaction final 
state is characterized by the great values of Coulomb 
parameters, which determines the external Coulomb 
field intensity. 

The experimental data obtained in the reactions 
with light nuclei resonant state excitation have 
shown that the deviation pointed out could range up 
to 100 % values for the observable resonance 
excitation energy *

RE  and its half width * / 2  with 
respect to the parameters RE and 2 , determining 
the isolated resonance complex energy 

2R RZ E i   . It was shown in 4, 10 that in the 
case of resonances far from the decay thresholds the 
resonance curves are always broadened in 
accordance with experimental data. The case of the 
near-threshold resonance is more complicated: the 
resonance peak can be narrowed at some kinematical 
conditions 7. Moreover, the effect of the branching 
ratio change can take place 4, 11. 

The modification of the theory represented in 

4, 10 is developed below for the case of the post-

collision Coulomb interaction in reactions with the 

near-threshold resonance formation. 

The model 
 

In the case under investigation short range 

nuclear forces are responsible for the resonance 

formation, so the known expression for the reaction 

amplitude, which takes into account the Coulomb 

interaction of the reaction products on the 

background of their nuclear interaction, can be used 

[10]: 

 23 1 0 23 1 0( , , 0) , , 0CT k p p E i T k p p E i     

 

23 1( )k p V U 

      

 

0( ) ( 0)( ) ( ) .V U G E i V U p  

        (1) 

 

Here, indexes   and   denote the initial and 

final reaction channels respectively,  G Z   

 
1

Z H


   is the total Green’s function of the 

system with the Hamiltonian H , 0Z E i   is the 

energy of the system. The potential s cV V V     is 

the sum of the nuclear and Coulomb potentials, 

acting between particles from different fragments in 

the final channel, U is the Coulomb interaction 

between produced fragments,  23 1k p

  is the 

wave function of the outgoing reaction channel of 

the form 
 

   
3

23 1 23 1
1

,C j
j

k p k p 




     

 

where j  is the bound-state wave function of the 

fragment j  and  23 1C k p  is the wave function of 

the pure Coulomb scattering of produced fragments, 
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i.e. for the potential U . The state 0( )p

  is 

determined in the same way. The channel 

Hamiltonian H  has the form 
 

0 ,j

j

H H h    

 

where 0H  is the free Hamiltonian of the three-body 

system and jh  denotes the j -th fragment internal 

motion, so that 
2 ,j j j jh      

 

2

j  being the binding energy of the fragment j . 

Usually, 23k  and 1p  are the Jaсobi coordinates of 

the three-body system in the momentum space, 

therefore, the energy of the system is equal to 
 

2 2 3
223 1

123 1

,
2 2

j

j

k p
E

n 

   


  

 

where 23  and 1n  are the corresponding reduced 

masses 

2 3
23

2 3

m m

m m
 


    

 1 2 3

1 1,23

1 2 3

.
m m m

n n
m m m


 

 
 

 

Finally, CT  is the amplitude of the pure Coulomb 

transition between channels   and  . 

To extract the resonant behavior of the reaction 

amplitude (1) we perform the following. We start 

from the second resolvent identity for  G Z : 
 

     23

23 23( )G Z G Z G Z V G Z  ,        (2) 
 

where the operator    
1

23 23G Z Z H


   is the 

Green's function for the Hamiltonian 23 23H H V  . 

The operator 23V  is the sum of the Coulomb and 

nuclear potentials acting between fragments 2 and 3, 

whereas 23V  equals 23H H . For further 

consideration the Hamiltonian 23H  is conveniently 

represented in the form 
3

23 23 01,23

1

j

j

H h H h


   , 

where 23h  is the Hamiltonian of the internal motion 

in the pair 23, 01,23H  is the kinetic energy operator of 

the particle 1 and the pair 23 relative motion, so that 

in the momentum space 01,23H  is the operator of 

multiplication by the value 
2

1

12

p

n
. 

The operator  23G Z  can be represented as 

 

1
3

23 23 01,23

1

j

j

G Z g Z H h





 
   

 
 , where  23g Z   

 
1

23Z h


  is the Green's function of the pair 23. In 

its turn  23g Z  is written in the form of the formal 

resonance theory expansion [10, 15] 

 

     
 

 23 23 23 23

1
M M

M

g Z R Z I R Z W WR Z I
Z

           
 .                          (3) 

 

In the expansion (3) it is supposed that the 

Hamiltonian 23h  is represented in the form 
 

23 23 ,h h W   
 

where the Hamiltonian 23h  has the bound state 

embedded in the continuous spectrum, 

M M

M

P     is the projection operator on this 

bound state, while W is some perturbation potential. 

The operator  23R Z  is the resolvent of the 

Hamiltonian 23Qh Q  in the truncated Hilbert space 

with Q = I - P 
 

   
1

23 23R Z ZQ Qh Q Q


  . 
 

The function ω(Z) is determined as 
 

   0 23 ,M MZ Z W WR Z W           (4) 
 

where 0  is given by the relation 

23 0 .M Mh      

 

The expansion (3) is written on the assumption 

that the Hamiltonian 23h  and 23h  are invariant under 

space rotations, so that the index M in Eq. (4) can be 

arbitrary ( L M L   , L is the resonance angular 

momentum). In the case in question the function 

 Z  can be represented as 

 

    0 ,RZ Z Z Z                       (5) 

 

where 
2

R RZ E i


   is the energy of the resonance 

state. The explicit form of the function  0 Z  can 

be found on the assumption that 23V  and W are 

dilatation analytic potentials. Then the function 

 Z  has a (many-sheeted) analytic continuation 

onto the part of the unphysical sheet by the law 
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               * ,M MZ Z W W R Z W                                      (6) 

 

where 
 

     
3

2 ,M M Mr r U e e r


        

 

Im 0,                                 (7) 
 

 U   being the dilatation operator, 
 

     1 ,W U WU      
 

       1R Z U R Z U      
 

          
1

23ZQ Q h Q Q


              (8) 

 

and so on (see, for example, [19] for details).  

The resonance energy RZ  satisfies the equation  
 

  0RZ                               (9) 

and 
 

 
   

0

R

R

Z Z
Z

Z Z

  
  


 

(10) 

           *1 M R MW R Z R Z W         . 

 

In the physical region ( 0Z E i  ) the function 

 Z  can be represented in the equivalent form 
 

 
 

0 ,
2

R

E
E i A E i

 
      

 
            (11) 

 

where the value R  satisfies the equation 
 

 0 0,R M M RE W I i         
 

   M MI Z WR Z W              (12) 

and 
 

 0
1 0

RE

dI E i
A

dE



   , 

 

   12 Im 0 .E A I E i                  (13) 

 

In case of the resonance far from decay thresholds the 

values R  and RE  are equal and  RE   , while in 

the case of near-threshold resonance the values R  

and RE  may be different and the resonance width 

becomes energy dependent [10, 15, 16] 
 

   1 2 .E E                        (14) 
 

For example, let us suppose that the resonance under 

investigation decays into the two charged fragments. 

In this case the threshold behavior of the width 

 2 E  is described by the expression 
 

   23
21

2 23 231 ,LE Bk e L i
       

 

where B is a constant and 23  is the Coulomb 

parameter of the pair 23: 2 3 23
23

23

q q

R


  , iq  is the 

charge of i-th fragment.  

Substituting the expansion (3) in the second 

resolvent identity (2), we find 
 

     
 

 23 23 23 23

23

1
LM LM

M

G Z R Z Z Z
Z

 
     

 


 

 23I V G Z                             (15) 

with 
3

23 01,23

1

j

j

Z Z H h


    and  23LM Z   

 23 23 .LMI R Z W      

The equation (15) can be rearranged using the 

Veselova transformation [21] to extract the long-

range part of the effective interaction potential 

between the resonance and the accompanying 

fragment as well as the resonant part of the total 

Green's function  RG Z .  

From the equation (15) we have 

   
 

   23

23 23

23

1
.R LM LM

M

G Z Z Z I V G Z
Z

     
                                    (16) 

 

Representing  G Z  as the sum  
 

     RG Z G Z G Z                   (17) 
 

and  RG Z  in the form 
 

   
 

 23

23

1
,R LM M

M

G Z Z B Z
Z

 


       (18) 

we obtain that the kernel of the equation for the 

operator  MB Z  is equal to 

 

   
 

23

' 23 ' 23

23

1
.MM LM LMK Z V Z

Z
  


  (19) 

 

The operator    23

23 ' 23LM LMZ V Z   
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describes the static part of the effective potential 

acting between the resonance and the accompanying 

particle. The long-range part of this potential in the 

momentum representation is written as 
 

 
 '1 2 3

' 1 12
'

1 1

4
, ,MM

q q q
F p p

p p

 


            (20) 

 

where  '' 1 1,MMF p p  is the form-factor of the 

unstable system 
 

 
2

' 2 1
' 1 1 23 '

1

, 1
2

MM M M MM

p
F p p WR Z W

n

  
       

  
 

or after using the complex dilatation method 
 

     

2
2

' * 1
' 1 1 23

1

, 1
2

MM M

p
F p p W R Z

n


  

        
  

 

    'M MMW     . 

 

The last result shows that the expression 

 
2

' 1 1
' 1 1 0 23

1

,
2

MM

p
F p p Z

n

  
  

 
 differs from 1 by the 

function which is proportional to 
2

1
23

12
R

p
Z Z

n
  , so 

that the kernel (15) can be represented as  
 

' ' ' ,
C

MM MM MMK K K                   (21) 
 

where 
 

 ' '

' 1 1 1 1,23 1 '2

1
23

1

1
, ,

2

C C

MM MM

R

K p p p V p
p

Z Z
n

 

 

 (22) 

 

1,23

CV  being the pure Coulomb potential between the 

resonance and the third particle. The operator 

'MMK  describes the contribution in 'MMK  of the 

short-range part of the effective potential and the 

non-resonant part of the kernel (15) (e.g. the part of 

'MMK , which does not contain the resonance 

propagator    
1

23 01,23R RP Z Z Z H


   ). 

Introducing into consideration the Coulomb 

propagator  c

RP Z : 

   
1

23 01,23 1,23

c c

R RP Z Z Z H V


              (23) 

 

we can rewrite the expression for  RG Z  as 
 

   
 

   23 23

0 23

1 c

R LM R M

M

G Z Z P Z B Z
Z

 


  (24) 

with some operators  MB Z  of a non-resonant type, 

the explicit forms of which are not essential for 

further consideration.  

The following transformation of the expression 

(1) is based on the application of the effective charge 

method for the determination 23 1( , )c k p  12, 13: 

 

23 1 23 23 1,23 1( , ) ( ) ( )c c ck p k p        

 

 23 1,23 23 1( 0) ( , ) .c c c

cG E i U V U k p

      (25) 

In the expression (3) 23 23( )c k  denotes the two-

body Coulomb wave function for fragments 2 and 3, 

( 0)cG E i  is the Coulomb Green’s function for 

reaction products. The potential 1,23

cU  has the form: 

 

12 13 1
1,23

1 1

( ) 1
( ) ,c p

U
n

 
  


                (26) 

 

where ij  is the Coulomb parameter for the pair ij ; 

1  is the relative coordinate of the fragment 1 and 

the center of mass of the resonance *b . Lastly, the 

wave function 1,23 1( )c p  satisfies the following 

Schrödinger equation 

 

      
2

1
01,23 1,23 1 1 1 1,23 11,23

1

.
2

c

cc

p
H U p p

n

       

(27) 

 

Substituting the representation (17), (18) and (24) 

in the expression (1) for the reaction amplitude and 

using (25), we conclude that the last term in the right 

side of the expression (25) does not give the 

contribution in the resonant part of the amplitude 

(1). This resonant part is equal to 

       0

23 1 23 23 1,23 1 2 3 23 23 01,23( , , 0) 0C

R c c LM

M

T k p p E i k p V U E i H             

 
   0

0 01.23

1

0

c C

R R MC
P E Z C p

E i H
 
  

                                             (28) 

 

with 
2 2

23 1

23 12 2

C k p
E

n
 


 and      0 0

1M MC p B V U p 

      . 
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By virtue of the fact that the two-body Coulomb 

wave function in the momentum representation has a 

strong (  -function type) singularity in the forward 

direction [10, 21] the expression (28) can be 

simplified to 

 

     
2

1 23
23 1 0 23 23 23 0 1

23

( , , 0) 0 , 0 ,
2

R LM M

M

k
T k p p E i Y k k i I p E i  

      
 

                        (29) 

 

where 23  is the resonance decay vertex function 
 

 
23

2
* 23

23 23 23 23 23 2 3 23 23

23

( ) ( ) ( ) 0
2

LM c LMk

k
k d Y k k V U i  

         
 

             (30) 

 

and 
 

   0

1 1,23 1, 0 ( ) ( ) .c C

M c R R MI p E i p P E Z C p     

(31) 

Taking into account the properties of integrals 

with the two-body Coulomb Green's function in the 

momentum representation [22], the non-resonant 

behavior of the functions  ' 0

1 Mp C p  and 

approximating for this reason  ' 0

1 Mp C p  by the 

proper constant MC , we can rewrite the expression 

for MI in the form 
 

' '

1 1,23 1 1( ) ( ) ,c C

M c R R MI dp p P E Z p C    

 

   01
1

1

2 C

M R M

p
C n E E C p

p
       (32) 

 

or in the coordinate representation 
 

 
3

2
1 1,23 1 1 12 ( ) ( ) 0c C

M c R R MI d p P E Z C       . 

(33) 

The matrix element 1 ( ) 0c C

R RP E Z   is known in 

the explicit form [23] 
 

   1
1 1 1

,
1 2

( ) 0 1 2 ,
2

c C

R R R
i

n
P E Z i W ik

 
        



(34) 

where  ,W z   is the Whittaker function, 

 12 C

R Rk n E Z   and 
 1 2 3 1

R

q q q n

k


  . Using 

the integral representation for this function and the 

Nordsieck formula [14] 
 

'( )
ik

c

e
d k


   

  

 
 

  
  

2
' 2

2
3 122 ' 2

4
1

2

i

i

k i k
e i

k k






 

  


   
  

     (35) 

 

(  is the corresponding two-body Coulomb para-

meter), we obtain after some transformations 
 

 
 

4
1 2

3
11

4
1 .R

M M j

jR

n k
I e i C A

p k


 



   


      (36) 

 

The values jA  in (36) are defined by the relations 

 1

0

1A i dx



     2 ,1 ;ix f i i x     , 

 

 2

1

1A i dx



      2 ,1 ;ix f i i x     , 

 

 
1

3

0

1A i dx      1 2 ,1 ;ix f i i x     , 

 

 
1

4

0

1A i dx       1 1 , 2 ;ix x f i i x       (37) 

 

with 12 13   ,      , ; 1f x x x
 

       

and 1

1

R

R

k p

k p


 


,   being the small parameter in the 

vicinity of the resonance energy RE . The 

investigation of the  -dependence of the values jA  

shows that only 1A  has the resonant behavior 
 

   
 2

1 2 11

1 1 , 2
1 ;1 ;1 ,

i

i B i i
A F i i

 

      
      



(38) 

where the parameter   equals   . 

As a result the resonant part of the reaction 

amplitude takes the form 
 

   

 
   

23 23 23 12
23 1 0

23 1
23

( , , 0) 1

2

LM i

R M

M

R

Y k k p
T k p p E i e i D

E p
E i


 

 
  

         
    

 ,                  (39) 
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where 
 

   
 2

1 2 11

1 1 , 2
1 ;1 ;1

i

i B i i
A F i i

 

      
      


 

(40) 

and 

 1 2

1

1M M

p
D e i C

p


  

    
 

. 

 

At this stage there are a number of points to be 

made.  

1. The expression (39) should be regarded as the 

leading term of the reaction amplitude asymptotic 

expansion in the parameter  . 

2. In the case of the resonance far from decay 

thresholds the parameterizations equivalent to (39) 

were obtained earlier in [1 - 4] by using different 

approaches: the eikonal approximation in [2]; the 

Redmond - Merkuriev approximation for the three-

body Coulomb wave function in [4]; the 

approximate expression for the matrix elements of 
C

RP  in the momentum representation in [3]. 

Nevertheless, the condition 1   was pointed out 

explicitly only in [4]. 

3. The parameterizations [1 - 4] are valid if the 

supplementary condition 1   is fulfilled. In this 

case the function     (40) is practically equal to 1, 

but the factor     has to be taken into account, if 

1  , for example, in reactions with heavy ions. 

The examples of the nuclear reactions, in which the 

condition under discussion is fulfilled (or is 

violated), are given in the Table. 

4. The expression (39) describes the near-

threshold resonance formation as well. This case 

was originally investigated in [7, 8, 20] under 

condition 1  . Redefining the values MD , we 

transform the expression (39) to the results of [7, 8] 

(with the additional factor    ) 
 

23 1 0( , , 0)RT k p p E i   
 

   2
231

2

i

Re i E E i

 
   

          
   

 

 

   
 

23 23 23

23

23
2

LM M

M

R

k Y k D

E
E i






  


.                (41) 

 

The last term in Eq. (41) corresponds to the well-

known Migdal - Watson approximation [4, 10], 

whereas the factor in the first square bracket 

describes the influence of the accompanying particle 

Coulomb force field on the resonance decay. 
 

The parameters of the resonances, 

which are formed in the final states of different reactions 
 

Reactions and resonance 

decay channels 
Ep, MeV EC, MeV ER, MeV Г, MeV | ξ | η = η12 + η13  (ER)|

7Li(, )7Li*, 
7Li*(7.45 MeV)→6Li+n

27.2 10.1 0.262 0.154 0  0.04 0.45  0.55 0.5 2.0 · 10-3 

7Li(, )7Li*,  
7Li*(7.45 MeV)→+t

27.2 14.8 5.027 0.154 0  0.15 0.45  0.65 0.5 0.2 · 10-3 

58Ni(6He, 57Co)7Li*, 
7Li*(7.45 MeV)→6Li+n 

13.6 6.9 0.262 0.154 0 5 34  42 37.2 2.9 · 10-3 

7Li(d, )5He*,  
5He*(1.27 MeV)→+n 

2 16.68 2.059 5.57 0.23  20 0.2  20 0.25 0.5 · 10-1 

7Li(d, )5He**,   
5He**(16.76 MeV)→+n 

6.8 20.4 17.67 0.09 0.1  2.7 0.7  3.3 0.6 4.1 · 10-3 

4He(d, p)5Heg.s.,  
5Heg.s. →+n 

11.3 2.1 0.89 0.6 0  0.3 0.2  0.5 0.3 6.3 · 10-2 

10B(d, )8Be*,  
8Be*(19.86 MeV)→ 

13.6 29.8 19.95 0.7 0.5 3.2 0 2.5 0.7 8.9 · 10-3 

58Ni(7Li, 57Co)8Be*, 
8Be*(19.86 MeV)→ 

50 53.8 19.95 0.7 0  8 6  16 7.8 2.6 · 10-3 

58Ni(7Li, 57Co)8Be*, 
8Be*(19.86 MeV)→ 

200 187.6 19.95 0.7 0  0.45 3.3  3.9 3.5 5.2 · 10-4 

 

The parameterization (41) leads to the following 

expression for the value 
2

RT : 

   1
2 2

23 1 0 1 2( , , 0) 1RT k p p E i e i i i
 

        

   

   

1 23

2

2
2 2

23 23

2 2
2 2 23

23 23

( )
 

( )

4 4

Rarcctg E E

R R

e k

E
E E E
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* *

23 ' 23 '

, '

( ) ( ) .LM LM M M

M M

Y k Y k D D          (42) 

 

The Coulomb parameter   is represented in (42) 

as the sum 1 2i      with 2 0  . For resonances 

far from the decay thresholds the value 2  is 

negligibly small. 

The parameterization predicts the following 

peculiarities: 

1. At 1 0   the resonance position is shifted 

to the lower energies 23E . If resonance is far from the 

decay thresholds the resonance curve is broadened [1, 

4], while in the case of near-threshold resonance the 

narrowing effect can be observed [7, 8]. 

2. If 1 0  , the position of the resonance is 

shifted in the direction of higher energies 23E  and is 

always broadened [4, 7, 8]. 

3. In all cases the resonance curve is asymmetric. 

4. If the parameter 2  is not small, the resonance 

curve is additionally broadened. 

5. In case of the near-threshold resonances the 

decay branching ratio change is possible too [4, 11]. 
 

The branching ratio for the decay of the near-

threshold resonance 7Li*(7.45 MeV) 
 

In this section the properties of the near-threshold 

resonance 7Li*(7.45MeV) are investigated. This 

resonance is formed in the reaction 
 

α + 7Li→α + 7Li*→α + 6Li + n           (43) 
 

                                         →α + α + t  
 

at E = 27.2 MeV. The scattered -particles were 

detected at θ = 44º. We can use the amplitude 

parameterization (42) since the parameter  is small 

in this reaction (n    10-3).  

For these kinematical conditions the resulting 

Coulomb parameters      for both reaction 

final channels are quite small 

( ~ 0.04n  ~ 0.15 ), so the change of the reso-

nance parameters is not pronounced (Fig. 1).  

The more pronounced effect was observed under 

investigation of the decay branching ratio. The 

probability of the specified decay channel was 

defined by the relation [11, 17] 
 

1 2

i
iP



  

.                           (44) 

 

In Eq. (44) i  denotes the result of the integration 

of the double differential cross section over the energy 

range, which corresponds to the resonant peak: 
 

2

i
i

d
dE

dE d


 


 

 .                     (45) 

 
Fig. 1. The shape of the resonance 7Li*(7.45 MeV), 

decaying into the channel α + t in the reaction 

α + 7Li→α + 7Li*→α + α + t at Eα = 27.2 MeV. The 

calculations on the base of the Migdal - Watson 

model and the parameterization (42) are shown by 

dashed and solid line, respectively.  
 

It should be pointed out that in case of the 

resonances far from the decay thresholds the relation 

(44) is equal to Γi/Γtot as in the case, when the 

accompanying particle does not influence on the 

resonance decay [4]. 
 

The double differential cross section is defined by the relation 
 

1 32 4
2

1 2 2
23 23 23 23 1 0

0

32
( ) ( ) ( , , 0) .id n
E E m d T k p p E i

dE d p
 

 

 
   

                          (46) 

 

The integration over the direction of the 

momentum 23k  can be performed by the following 

way [7]. By introducing the spin variables 

( 5/2

5
( )

2
J P



  , 1L  , 
3

2
S   - the spin of the 

resonant system) and summing over the final spins 

we can rewrite the expression (42) as 
 

 

2
2

23

23 1 0 2
2 , , '23

, '23

( ) ( )
( , , 0) ( | )( ' | ')

( )

4

m m
M MR

f k
T k p p E i LMS Jm LM S Jm

E
E



  
    

 
   

 

  

 

   * *

' 23 ' 23 ,M M LM LMD D Y k Y k                                                       (47) 



COULOMB INTERACTION EFFECTS 

341 

 

where 
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The function ( )f   depends on the angle 1,23  

between the momenta 23k  and 1p , so we have 
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Owing to the properties of the spherical 

harmonics only even values of l give the 

contribution in the integral (46). In the reaction 

under investigation (43) (E = 27.2 MeV, θ = 44º) 

the value 0f  dominates 4

0( 10 , 1)lf f l  , 

therefore  
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  (50) 

 

The last expression shows that the influence of 

the accompanying α-particle Coulomb field is 

described by the unique function 0f . 

The vertex functions 23( )i k  and the energy-

dependent width  23n E  were chosen in 

accordance with the formal resonance theory 

[10, 15, 16], in particular, 23 23( ) ~ Lk k  and 
2 1

23 23( ) ~ L

n k k   ( 1L  ). 
 

 
Fig. 2. The probability of decay of 7Li*(7.45 MeV) 

into the channel n + 6Li in the reaction 7Li(α, α)7Li* 

at Eα = 27.2 MeV and α = 44º as a function of the 

parameter N = ∆E/Г.  
 

The probability of decay depends on the interval 

of integration width ΔE (Fig. 2): to obtain the 

accuracy of 5 % this width should be about 10·Г. 

Usually the integration interval of experimental 

resonance peaks does not exceed 5·Г. Therefore, the 

probability decay into the n + 6Li channel 

P(n + 6Li)theor = 0.58 ± 0.06 can be used as the result 

of calculations for comparison with experimental 

data. The above error covers all possible values of 

this quantity calculated for the range of integration 

width up to ΔE > 20·Г. The calculated decay 

probability agrees well with the experimental value 

P(n + 6Li)exp = 0.56 ± 0.03, which was obtained in 

[17] for 7Li*(7.45 MeV) resonance excited in the 

reaction under investigation. The measurements in 

[17] were performed at Eα = 27.2 MeV and α = 44º 

for all possible decay angles of 6Li (6Li and φ6Li) 

using the position-sensitive detector and the method 

proposed in [11].  

At the same time, both the experimental and 

theoretical results differ noticeably from the relation 

Γ(n + 6Li)/Γtot = 0.77 and σn/σtot = 0.71 [18], where σn 

and σtot are the n +6Li elastic and total cross sections 

at the resonance energy. The calculation of the decay 

probability for the binary reaction by analogy with 

(45) gives P(n + 6Li) = 0.68 instead of the value 0.71.  

The performed calculations also showed that the 

value P(n + 6Li) strongly depends on the incident α-

particle energy (Fig. 3). At high energies the 

influence of the accompanying α-particle on the 

resonance decay becomes negligible, so that the 

probability P(n + 6Li) is the same as in the isolated 

decay case.  
 

 
Fig. 3. The dependence of the probability P(n + 6Li) 

in the reaction 7Li(α, α)7Li* at α = 44º on the energy 

of the incident α-particle: the interval of the 

integration width ΔE is equal to 5·Г (solid line) and 

10·Г (dashed line), ● – experimental data from [17]. 
 

The dependence of the probability of the decay 
7Li*(7.45MeV) into the channel n + 6Li at different 

detecting angles of the α-particle was calculated too 

(Fig. 4). Unfortunately, there are no more data in 

addition to those obtained in [17], which could 

confirm predicted energy and angular dependences 

of the decay probability into different channels for 
7Li*(7.45 MeV) resonance.  
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Fig. 4. The angular dependence of the decay 

probability P(n + 6Li) in the reaction 7Li(α, α)7Li* at 

Eα = 27.2 MeV: ΔE is equal to 10·Г, ● – 

experimental data from [17].  
 

Conclusions 
 

Various properties of decay of two-fragment 

nuclear resonances that are formed in three particle 

reactions are predicted by modified theory that takes 

into account the Coulomb interaction in the exit 

channel of such reactions. Some of them have 

experimental confirmation, while others require 

further experimental studies, especially in the case 

of near-threshold resonances, for which the change 

of decay branching ratio is possible. So far this 

phenomenon was observed only for near-threshold 

resonance 7Li*(7.45 MeV) at the decay into n + 6Li 

channel in three-particle reaction 7Li(α, α6Li)n.  

The regularities of the non-isolated resonance 

decay established in this work can be applied both to 

the interpretation of the experimental data and to the 

recovery of the resonance parameters using the three 

and four particle reaction final state data. The 

parameterization (41) can be useful to plan new 

experiments and to predict new effects in non-

isolated decay of unstable quantum systems. 

It should be expected that the effect of the 

branching ratio change discovered in the non-

isolated 7Li*(7.45 MeV) decay could take place in 

other reactions with the formation of light nuclei 

resonant states, for example, 5He*(16.75 MeV), 
5Li(16.6 MeV), 8Be(22.2 MeV). The investigation of 

this problem is now in progress. 
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Разработана модифицированная теория взаимодействия в конечном состоянии, которая учитывает 

кулоновское взаимодействие продуктов распада двухфрагментных ядерных резонансов с сопутствующим 

продуктом реакции, включая случай околопороговых резонансов. Исследовано также изменение соотношения 
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