Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 2, pages 136-143.
Section: Nuclear Physics.
Received: 9.10.2014; Accepted: 11.06.2015; Published online: 20.07.2015.
PDF Full Text (ru)

Charge dependence of the pion-nucleon coupling constant

V. A. Babenko*, N. M. Petrov

M.M. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address:

Abstract: On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7) by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7). Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13) is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26) obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.

Keywords: nuclear forces, π-mesons, pp- and np-scattering, pion-nucleon constant.


1. L. Hulthen, M. Sugawara. The Two-Nucleon Problem. In: Encyclopedia of Physics, Vol. 39: Structure of Atomic Nuclei, Ed. by S. Flugge (Berlin-Gettingen-Heidelberg: Springer-Verlag, 1957) 1. Google Books

2. A. Bohr, B.R. Mottelson. Nuclear Structure, Vol. 1 (New York: Benjamin, 1969), 471 p. Google Books

3. T. Ericson, W. Weise. Pions and Nuclei (Oxford: Clarendon Press, 1988), 479 p. Google Books

4. R. Koch, E. Pietarinen. Low-Energy πN Partial Wave Analysis. Nucl. Phys. A 336(3) (1980) 331.

5. P. Kroll. Phenomenological Analyses of Nucleon-Nucleon Scattering. Physics Data. Vol. 22-1, Ed. by H. Behrens and G. Ebel (Karlsruhe: Fachinformationszentrum, 1981) 274 p. INIS

6. J.R. Bergervoet, P.C. van Campen, R.A.M. Klomp et al. Phase Shift Analysis of All Proton-Proton Scattering Data Below Tlab = 350 MeV. Phys. Rev. C 41(4) (1990) 1435.

7. V. Stoks, R. Timmermans, J.J. de Swart. Pion-Nucleon Coupling Constant. Phys. Rev. C 47(2) (1993) 512.

8. J.J. de Swart, M.C.M. Rentmeester, R.G.E. Timmermans. The Status of the Pion-Nucleon Coupling Constant. arXiv:nucl-th/9802084 (1998), 19 p.

9. R. Machleidt, I. Slaus. The Nucleon-Nucleon Interaction. J. Phys. G 27(5) (2001) R6.

10. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky et al. Dispersion Relation Constrained Partial Wave Analysis of πN Elastic and πN → ηN Scattering Data: The Baryon Spectrum. Phys. Rev. C 69(3) (2004) 035213.

11. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman. Extended Partial-Wave Analysis of πN Scattering Data. Phys. Rev. C 74(4) (2006) 045205.

12. D.V. Bugg. The Pion Nucleon Coupling Constant. Eur. Phys. J. C 33(4) (2004) 505.

13. V. Baru, C. Hanhart, M. Hoferichter et al. Precision Calculation of Threshold πd- Scattering, πN Scattering Lengths, and the GMO Sum Rule. Nucl. Phys. A 872(1) (2011) 69.

14. J. Rahm, J. Blomgren, H. Conde et al. np Scattering Measurements at 162 MeV and the πNN Coupling Constant. Phys. Rev. C 57(3) (1998) 1077.

15. L.A. Sliv. Charge Independence and Charge Symmetry of Nuclear Forces. Izv. Akad. Nauk SSSR, Ser. Fiz. 38(1) (1974) 2. (Rus)

16. T.E.O. Ericson, M. Rosa-Clot. The Deuteron Asymptotic D-state as a Probe of the Nucleon-Nucleon Force. Nucl. Phys. A 405(3) (1983) 497.

17. G.A. Miller, B.M.K. Nefkens, I. Slaus. Charge Symmetry, Quarks and Mesons. Phys. Rept. 194(1-2) (1990) 1.

18. J. Beringer, J.-F. Arguin, R.M. Barnett et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 86(1) (2012) 010001.

19. V.V. Babikov. Variable Phase Approach in Quantum Mechanics (Moskva: Nauka, 1976) 288 p. (Rus)

20. A.G. Sitenko, V.K. Tartakovskii, Lectures on the Theory of the Nucleus (Oxford, New York: Pergamon Press, 1975), 304 p. Google Books

21. W.O. Lock, D.F. Measday. Intermediate Energy Nuclear Physics (London: Methuen, 1970), 320 p. Google Books

22. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering on the Basis of Modern Experimental Data from Partial-Wave Analyses. Physics of Atomic Nuclei 70(4) (2007) 669.

23. V.A. Babenko, N.M. Petrov. Determination of Low-Energy Parameters of Neutron-Proton Scattering in the the Shape-Parameter Approximation from Present-Day Experimental Data. Physics of Atomic Nuclei 73(9) (2010) 1499.

24. J. Rahm, J. Blomgren, H. Conde et al. np Scattering Measurements at 96 MeV. Phys. Rev. C 63(4) (2001) 044001.

25. D.V. Bugg, A.A. Carter, J.R. Carter. New Values of Pion-Nucleon Scattering Lengths and f2. Phys. Lett. B 44(3) (1973) 278.

26. J. Haidenbauer. The Nucleon-Nucleon Interaction. Braz. J. Phys. 34(3A) (2004) 846.

27. M. Naghdi. Nucleon-Nucleon Interaction: A Typical/Concise Review. Phys. Part. Nucl. 45(5) (2014) 924.

28. V.A. Babenko, N.M. Petrov. Description of Scattering and of a Bound State in the Two-Nucleon System on the Basis of the Bargmann Representation of the S Matrix. Physics of Atomic Nuclei 68(2) (2005) 219.

29. R.W. Hackenburg. Neutron-Proton Effective Range Parameters and Zero-Energy Shape Dependence. Phys. Rev. C 73(4) (2006) 044002.