Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 2, pages 152-156.
Section: Radiation Physics.
Received: 15.05.2015; Accepted: 11.06.2015; Published online: 20.07.2015.
PDF Full Text (ua)
https://doi.org/10.15407/jnpae2015.02.152

Nanoformation in doped silicate glass and its fractal dimensions

L. A. Bulavin1, S. O. Samoilenko1,*, S. E. Kichanov2, D. P. Kozlenko2, O. I. Ivankov2, V. S. Gurin3, G. E. Rachkovska4, G. B. Zaharevych4, A. Kh. Islamov2, B. N. Savenko2

1 National Taras Shevchenko University, Kyiv, Ukraine
2 Joint Institute for Nuclear Research, Dubna, Russia
3 Research Institute of Physicochemical Problems, Belarusian National University, Minsk, Belarus
4 Belarusian State Technological University, Minsk, Belarus


*Corresponding author. E-mail address: samoilenko_pp@mail.ru

Abstract: PbS nanostructures in silicate glasses under different conditions of heat treatment were investigated using small-angle neutron scattering. It was found that spherical nanoparticles with radii of 3.0 nm to 3.9 nm are forming in these glasses. The increase of the average size of nanoparticles and changes in the fractal dimension of glass samples under increasing heat treatment time are observed. The structural model of the formation mechanism of PbS nanoparticles in a glass matrix during its thermal treatment is discussed.

Keywords: doped silicate glass, nanoparticles, small-angle neutron scattering, fractal dimension.

References:

1. U. Woggon. Optical Properties of Semiconductor Quantum Dots (Berlin: Springer, 1997) 251 p. Google Books

2. V.I. Klimov. Nanocrystal Quantum Dots, 2nd Ed. (London - New York: CRC Press, Taylor & Francis Group, Boca Raton, 2010) 469 p. Google Books

3. Y. Masumoto, T. Takagahara (Eds.). Semiconductor Quantum Dots (Berlin - Heidelberg - New York: Springer-Verlag, 1998) 486 p. Google Books

4. C.N.R. Rao, P.J. Thomas, G.U. Kulkarni. Nanocrystals: Synthesis, Properties and Applications (Berlin - Heidelberg - New York: Springer-Verlag) 180 p. Google Books

5. F.W. Wise. Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement. Acc. Chem. Res. 33 (2000) 773. http://doi.org/10.1021/ar970220q

6. P.A. Loiko, G.E. Rachkovskaya, G.B. Zacharevich, K.V. Yumashev. Wavelength-tunable absorption and luminescence of SiO2–Al2O3–ZnO–Na2O–K2O–NaF glasses with PbS quantum dots. J. Lumin. 143 (2013) 418. https://doi.org/10.1016/j.jlumin.2013.05.057

7. A.M. Malyarevich, K.V. Yumashev, A.A. Lipovskii. Semiconductor-Doped Glass Saturable Absorbers for Near Infrared Solid-State Lasers. J. Appl. Phys. 103 (2008) 081301. http://doi.org/10.1063/1.2905320

8. A.L. Rogach (Ed.). Semiconductor Nanocrystal Quantum Dots (Wien - New York: Springer-Verlag, 2008) 372 p. https://doi.org/10.1007/978-3-211-75237-1

9. V.S. Gurin. Nucleation and growth of PbS nanocrystals and simulation of X-ray diffraction patterns. J. Cryst. Growth 191 (1998) 161. https://doi.org/10.1016/S0022-0248(98)00038-4

10. J. Tang, E.H. Sargent. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress. Adv. Mater. 23 (2011) 12. https://doi.org/10.1002/adma.201001491

11. P.A. Loiko, G.E. Rachkovskaya, G.B. Zacharevich et al. Optical properties of novel PbS and PbSe quantum-dot-doped alumino-alkali-silicate glasses. J. Non-Cryst. Solids 358(15) (2012) 1840. https://doi.org/10.1016/j.jnoncrysol.2012.05.033

12. A.I. Kuklin, A.Kh. Islamov, Yu.S. Kovalev et al. Poverkhnost'. Rentgen., Sinkhrotr. i Nejtron. Issled. 6 (2006) 74. (Rus)

13. Y.M. Ostanevich. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. Makromol. Chem. Macromol. Symp. 15 (1988) 91. https://doi.org/10.1002/masy.19880150107

14. D.I. Svergun. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25 (1992) 495. https://doi.org/10.1107/S0021889892001663

15. D. Franke, D.I. Svergun. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42 (2009) 342. https://doi.org/10.1107/S0021889809000338

16. H. Brumberger. Modern Aspects of Small Angle Scattering (Dordrecht, 1995) 53 p. Google Books

17. A.F. Zatsepin, V.S. Kortov, N.V. Gavrilov, D.Yu. Biryukov. Photoemission and Luminescence Properties of Quartz Glass Implanted with Cu+ Ions. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2 (2008) 450. (Rus) https://doi.org/10.1134/S1027451008030233

18. L.A. Bulavin. The Neutron Diagnostics of Substance Liquid State (Chornobyl': In-t problem bezpeky AES NAN Ukrayiny, 2012) 532 p. (Ukr) Book

19. B.B. Mandelbrot. The Fractal Geometry of Nature (San Francisco: W.H. Freeman, 1982). Google Books