Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 3, pages 230-237.
Section: Radiation Physics.
Received: 02.03.2015; Accepted: 11.06.2015; Published online: 12.10.2015.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2015.03.230

Multiwalled carbon nanotube destruction in the radiation damages to electron irradiation

T. M. Pinchuk-Rugal1,*, O. P. Dmytrenko1, M. P. Kulish1, L. A. Bulavin1, O. S. Nychyporenko1, Yu. Ye. Grabovskyy1, A. G. Rugal1, M. A. Zabolotnyy1, M. M. Bilyy1, V. V. Shlapatskaya2, S. V. Lizunova3

1 Kyiv National Taras Shevchenko University, Kyiv, Ukraine
2 L. V. Pisarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: Pinchuk_Tatiana@ukr.net

Abstract: Behavior of the X-ray diffraction and vibrational Raman spectra of multiwalled carbon nanotubes (MWCNT) under high-energy electron irradiation (Ee = 1.8 MeV) with large doses of absorption to 10 MGy were studied. With increasing dose uptake to 10.0 MGy, the interlayer correlation in the distribution of the individual graphene nanotubes nets not only is maintained, but is even improved. Defective bands D, D' and G band with increasing dose absorption have significant transformation, which show radiation damages of MWCNT. The destruction of nanotubes under electron irradiation is accompanied by increased regulation in the arrangement of individual nanotubes by interlayer cross-links involving interstitial atoms. The severity of degradation and cross-linking of MWCNT depends on the electron absorption dose.

Keywords: multi-walled carbon nanotubes, X-ray diffraction, Raman scattering, electron irradiation, radiation damages, destruction.

References:

1. A.V. Eletskij. Carbon nanotubes. Phys. Usp. 40(9) (1997) 899. https://doi.org/10.1070/PU1997v040n09ABEH000282

2. A.V. Eletskij. Carbon nanotubes and their emission properties. Phys. Usp. 45(4) (2002) 369. https://doi.org/10.1070/PU2002v045n04ABEH001033

3. A.V. Eletskij. Sorption properties of carbon nanostructures. Sov. Usp. 47(11) (2004) 1119. https://doi.org/10.1070/PU2004v047n11ABEH002017

4. A.V. Eletskij. Transport properties of carbon nanotubes. Sov. Usp. 52(3) (2009) 209. https://doi.org/10.3367/UFNe.0179.200903a.0225

5. A.V. Eletskij. Cold field emitters based on carbon nanotubes. Sov. Usp. 53(9) (2010) 863. https://doi.org/10.3367/UFNe.0180.201009a.0897

6. E.G. Rakov. Nanotubes of inorganic substances. Rus. J. Inorg. Chem. 44(11) (1999) 1736. (Rus)

7. E.G. Rakov. Methods for obtaining carbon nanotubes. Rus. Chem. Rev. 69(1) (2000) 35. https://doi.org/10.1070/RC2000v069n01ABEH000531

8. E.G. Rakov. Chemistry and application of carbon nanotubes. Rus. Chem. Rev. 70(10) (2001) 827. https://doi.org/10.1070/RC2001v070n10ABEH000660

9. A.I. Vorob'eva. Equipment and techniques for carbon nanotubes research. Sov. Usp. 53(3) (2010) 257. https://doi.org/10.3367/UFNe.0180.201003d.0265

10. R.H. Baughman, A.A. Zakhidov, W.A. de Heer. Carbon nanotubes the route toward applications. Science 297 (2002) 782. https://doi.org/10.1126/science.1060928

11. M.F. Yu, B.S. Files, S. Arepalli et al. Tensile loading of ropes single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24) (2000) 5552. https://doi.org/10.1103/PhysRevLett.84.5552

12. I.V. Zolotukhin, I.M. Golev, A.E. Markova et al. Effective density and transport properties of compacted carbon nanotubes and nanofibers. Pis'ma v ZhTF 31(4) (2005) 54. (Rus) http://journals.ioffe.ru/articles/11493

13. E. Bichoutskaya, O.V. Ershova, Yu.E. Lozovik et al. First-principles calculations of the shear strength of carbon nanotube layers. Pis'ma v ZhTF 35(14) (2009) 59. (Rus) http://journals.ioffe.ru/articles/13926

14. A.V. Krasheninnikov, K. Nordlund. Signatures of irradiation-induced defects in scanning-tunneling microscopy images of carbon nanotubes. Fizika Tverdogo Tela 44(3) (2002) 452. http://journals.ioffe.ru/articles/39423

15. J. Schwan, S. Ulrich, V. Batori et al. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1) (1996) 440. http://doi.org/10.1063/1.362745

16. V.I. Ivanov-Omskij, A.B. Lodychkin, S.G. Yastrebov. Scanning tunneling microscopy and spectroscopy of amorphous carbon. Overview. Fizika Tekhnika Poluprovodnikov 34(12) (2000) 1409. (Rus) http://journals.ioffe.ru/articles/37301

17. V.I. Ivanov-Omskij, A.V. Kolobov, A.B. Lodychkin et al. Size distribution of cobalt nanoclusters in an amorphous carbon matrix. Fizika Tekhnika Poluprovodnikov 38(12) (2004) 1463. (Rus) http://journals.ioffe.ru/articles/5682

18. F. Benueu, C.I. Huillier, J.-P. Salvetat et al. Modification of multiwall carbon nanotubes by electron irradiation: An ESR study. Phys. Rev. B 59(8) (1999) 5945. https://doi.org/10.1103/PhysRevB.59.5945

19. D. Reznik, H.C. Olk, D.A. Neumann et al. X-Ray powder diffraction from carbon nanotubes and nanoparticles. Phys. Rev. B 52(1) (1995) 116. https://doi.org/10.1103/PhysRevB.52.116

20. O. Zhou, R.M. Fleming, D.W. Murphy et al. Defects in carbon nanostructures. Science 263(51) (1994) 1744. https://doi.org/10.1126/science.263.5154.1744

21. F. Sanchez-Bajo, A.L. Ortiz, F.L. Cumbrera. Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry. Acta Mater. 54 (2006) 1. https://doi.org/10.1016/j.actamat.2005.08.018

22. X. Zhao, Y. Ando, L.C. Qin et al. Characteristic Raman spectra of multi-walled carbon nanotubes. Physica B 323 (2002) 265. https://doi.org/10.1016/S0921-4526(02)00986-9

23. M. Hulman, V. Skakalova, S. Roth et al. Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by γ-rays. J. Appl. Phys. 98 (2005) 024311. http://doi.org/10.1063/1.1984080

24. U. Ritter, P. Sharff, C. Siegmund et al. Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44 (2006) 2694. https://doi.org/10.1016/j.carbon.2006.04.010

25. M.A. Tamor, W.C. Vassell. Raman fingerprinting of amorphous carbon films. J. Appl. Phys. 76(6) (1994) 3823. http://doi.org/10.1063/1.357385

26. A.M. Danishevskij, E.A. Smorgonskaya, S.K. Gordeev et al. Combination scattering of light in nanoporous carbon obtained from silicon carbides and titanium. Fizika Tverdogo Tela 43(1) (2001) 132. (Rus) http://journals.ioffe.ru/articles/38031

27. I.A. Fajzrakhmanov, V.V. Bazarov, V.A. Zhikharev et al. Influence of bombardment by carbon ions on the nanostructure of diamond-like films. Fizika Tekhnika Poluprovodnikov 35(5) (2001) 612. (Rus) http://journals.ioffe.ru/articles/38533

28. I.A. Fajzrakhmanov, V.V. Bazarov, N.V. Kurbatova et al. Synthesis of new carbon-nitrogen nanoclusters during thermal annealing in a nitrogen atmosphere of diamond-like carbon films. Fizika Tekhnika Poluprovodnikov 37(2) (2003) 230. (Rus) http://journals.ioffe.ru/articles/5211

29. I.A. Fajzrakhmanov, V.V. Bazarov, A.L. Stepanov et al. Modification of the nanostructure of diamond-like carbon films by bombardment with xenon ions. Fizika Tekhnika Poluprovodnikov 37(6) (2003) 748. (Rus) http://journals.ioffe.ru/articles/5301