Nuclear Physics and Atomic Energy

Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 3, pages 292-302.
Section: Engineering and Methods of Experiment.
Received: 07.04.2015; Accepted: 30.07.2015; Published online: 12.10.2015.
PDF Full text (ru)

Detector of reactor antineutrinos with plastic stintillation bars

A. Sh. Georgadze*, V. M. Pavlovych

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address:

Abstract: Project of a segmented antineutrino detector is developed with the use of plastic scintillator rectangular bars 10 x 10 x 100 cm, wrapped in Gd foils and assembled into an array of 1 m3 active volume. The scintillation array is sandwiched at both sides by the continuous light guides of 100 x 100 x 10 cm size, from which the scintillation light is spreading simultaneously through continuous light guides between all photomultipliers, forming the specific Light Response Function (LRF), which is character to a certain nuclear event in detector. Analysis of LRF allows one to effectively reject background events, providing high efficiency detection of antineutrino capture in the detector. Monte Carlo simulations with the help of MCNP and ZEMAX software show that with the use of selection criteria the neutrino events are well separated from the background.

Keywords: antineutrino, reactor, scintillation detector, neutrino diagnostics.


1. L.A. Mikaelyan. Neutrino laboratory in the atomic plant (fundamental and applied researches). Proc. Int. Conf. Neutrino-77. Vol. 2 (1978) p. 383.

2. Yu.V. Klimov, V.I. Kopejkin, A.A. Labzov et al. Measurement of the electronic antineutrinos spectrum of a nuclear reactor. Yadernaya Fizika 52 6(12) (1990) 1574. (Rus)

3. V.A. Korovkin, A. Kodanev, A.D. Yarichin et al. Measurement of burnup of nuclear fuel in the reactor by neutrino radiation. Atomnaya Energiya 56(4) (1984) 214. (Rus)

4. Yu.V. Klimov, V.I. Kopejkin, L.A. Mikaelyan et al. Remote measurement of reactor power and energy production by neutrino method. Atomnaya Energiya 76(2) (1994) 130. (Rus)

5. A. Bernstein, Y. Wang, G. Gratta, T. West. Nuclear reactor safeguards and monitoring with antineutrino detectors. J. Appl. Phys. 91 (2002) 4672.

6. Focused Workshop on Antineutrino Detection for Safeguards Applications: Final Report. Oct 2008. (International Atomic Energy Agency Headquarters, 2008). Report

7. I. Alekseev, V. Belov, V. Brudanin et al. DANSSino: a pilot version of the DANSS neutrino detector. Phys. Part. Nucl. Lett. 11 (2014) 473.

8. Y. Kuroda, S. Oguri, Y. Kato et al. A mobile antineutrino detector with plastic scintillators. Nucl. Instrum. Methods Phys. Res. A 690 (2012) 41.

9. B. Luther, T. Baumann, M. Thoennessen et al. MoNA - The Modular Neutron Array. Nucl. Instrum. Methods Phys. Res. A 505 (2003) 33.

10. M. Battaglieri, R. DeVita, G. Firpo et al. An anti-neutrino detector to monitor nuclear reactors power and fuel composition. Nucl. Instrum. Methods Phys. Res. A 617 (2010) 209.

11. J. Llacer, S. Andreae, E. Veklerov, E.J. Hoffman. Towards a practical implementation of the MLE algorithm for Positron Emission Tomography. IEEE Transactions on Nuclear Science 33 (1986) 468.

12. H.O. Anger. Scintillation camera. Rev. Sci. Instrum. 29 (1958) 27.

13. Radiant ZEMAX.

14. D.J. van der Laan, D.R. Schaart, M.C. Maas et al. Optical simulation of monolithic scintillator detectors using GATE/GEANT4. Phys. Med. Biol. 55 (2010) 1659.

15. A.F. Danevich, R.V. Kobychev, V.V. Kobychev et al. Optimization of light collection from crystal scintillators for cryogenic experiments. Nucl. Instrum. Methods Phys. Res. A 744 (2014) 41.


17. X-5 Monte Carlo Team, LANL Report LA-UR-03-1987, Los Alamos (2008).

18. J.F. Briesmeister (Ed.) MCNP - a general Monte Carlo N-particles transport code, version 4c. Technical Report LA-13709, Los Alamos National Laboratory, USA, 2000. Report

19. V.I. Tretyak. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33 (2010) 40.

20. D.L. Smith, R.G. Polk, T.G. Miller Measurement of the response of several organic scintillators to electrons, protons and deuterons. Nucl. Instrum. Methods 64 (1968) 157.

21. G.V. O'Rielly, N.R. Kolb, R.E. Pywell The response of plastic scintillator to protons and deuterons. Nucl. Instrum. Methods Phys. Res. A 368 (1996) 745.

22. M.B. Chadwick, M. Herman, P. Oblozinsky et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets 112 (2011) 2887.

23. S. Brandt. Data Analysis: Statistical and Computational Methods for Scientists and Engineers. 4-th Ed. (Springer, 2014) 523 p.

24. E. Leman. Testing of Statistical Hypotheses. Trans. from English by Yu.V. Prokhorov (Moskva: Nauka, 1979) 408 p. (Rus)

25. D.Yu. Akimov, H.M. Araujo, E.J. Barnes et al. The ZEPLIN-III Anti-Coincidence Veto Detector. Astropart. Phys. 34 (2010) 151.

26. S.N. Ketov, I.N. Machulin, L.A. Mikaelyan. Heterogeneous Rovno antineutrino detector. Preprint IAE-4912/2 (Moskva, 1989) 12 p. (Rus)

27. S. Abe, S. Enomoto, K. Furuno et al. Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND. Phys. Rev. C 81 (2010) 025807.

28. C. Jun. Determining Reactor Neutrino Flux. Nucl. Phys. B (Proc. Suppl.) 229-232 (2012) 205.