Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 4, pages 367-373.
Section: Radiation Physics.
Received: 22.06.2015; Accepted: 10.12.2015; Published online: 12.02.2016.
PDF Full text (ua)

Radiation-induced structure transformation and vibrational spectra of polyethylene

O. S. Nychyporenko1,*, O. P. Dmytrenko1, M. P. Kulish1, T. M. Pinchuk-Rugal1, Yu. E. Grabovskyj1, M. A. Zabolotnyj1, L. A. Bulavin1, E. P. Mamunya1, V. V. Levchenko2, V. V. Strelchuk3, O. M. Kutsaj4, V. V. Shlapatska5

1 Kyiv Taras Shevchenko National University, Kyiv, Ukraine
2 Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 V. E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4 V. M. Bakul Superhard Materials Institute, National Academy of Sciences of Ukraine, Kyiv, Ukraine
5 L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address:

Abstract: Crystal structure and vibrational spectra of low density polyethylene and nanocomposites with carbon nanotubes in the initial state and after high energy electron irradiation in wide range of absorption dose (0.05 - 4.72) MGy were studied. It is shown that with increasing of electron absorption dose the degree of crystallinity changes monotonically, while maintaining the orthorhombic phase. Changes in IR absorption spectra and Raman scattering are caused by radiation-stimulated change in the structure of polyethylene, which includes the destruction of the main and side chains, and the creation of cross-linking macrochain π-conjugated polyene sequences.

Keywords: low density polyethylene, crystal structure, degree of crystallinity IR absorption, Raman scattering, high-energy electron irradiation.


1. L. Olasz, P. Gudmundson. Viscoelastic model of cross- linked polyethylene including effects of temperature and crystallinity. Mech. Time-Depend. Mater. 9 (2006) 225.

2. L. Myasnikova, N. Blashenkov, Yu. Boiko et al. Relaxation processes in polymer surface layers. Micromol. Symp. 242 (2006) 182.

3. S.V. Kolesov, V.N. Salimgareeva. Polyvinylenes: ≤≤≤. Properties. Vestnik Bashkirskogo Universiteta 13(1) (2008) 27. (Rus) Article

4. S.Ja. Pshezheckij, A.G. Kotov, V.K. Milinchuk et al. Free Radical Electron Paramagnetic Resonance in Radiation Chemistry (Moskva: Khimiya, 1972) 480 p. (Rus)

5. V.K. Milinchuk, Je.R. Klinshpont, S.Ja. Pshezheckij. Macroradicals (Moskva: Khiniya, 1980) 264 p. (Rus)

6. S.A. Gordeyev, G.Yu. Nikolaeva, K.A. Prokhorov. The Raman study of the structure of oriented polyethylenes. Laser Physics 6(1) (1996) 121.

7. G.Y. Lee, S.G. Lee, K.S. Kim. Raman intensities of C=C stretehing vibrational frequencies of polyenes: Nodal mode analysis. J. Chem. Phys. 107(11) (1997) 4112.

8. D.B. Dias, L.G. Silva. Polyethylene foams cross-linked by electron beam. Rad. Phys. Chem. 76 (2007) 1696.

9. S. Krimm, C.Y. Liang, G.B. Sutherland. Infrared spectra of high polymers. II. Polyethylene. J. Chem. Phys. 25(3) (1956) 549.

10. S. Lu, E. Russell, P.J. Hendra. The Raman spectra of high modulus polyethylene fibres by Raman microscopy. J. Mater. Sci. 33 (1998) 4721.

11. K.A. Prokhorov, G.Yu. Nikolaeva, S.A. Gordeyev et al. Raman scattering in oriented polyethylene. The C-H stretching region. Laser Physics 11(1) (2001) 86.