Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 1, pages 38-46.
Section: Radiation Physics.
Received: 05.02.2016; Accepted: 11.04.2016; Published online: 02.06.2016.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2016.01.038

Influence of irradiation on the phase equilibrium parameters in liquids

L. A. Bulavin, D. A. Gavryshenko, K. V. Taradiy*, N. A. Atamas, V. M. Sysoev

Taras Shevchenko National University of Kyiv, Ukraine

*Corresponding author. E-mail address: thegreattheory@gmail.com.

Abstract: The work is dedicated to the investigation of irradiation influence on those properties of liquid systems, which are defined by the change of chemical potential of the liquid and its components under the influence of irradiation. It was shown that irradiation of the coexistent phases at the stationary state leads to the shift of phase transition point parameters. The shift of the temperature and pressure of the phase transition was obtained for the first order phase transitions under the influence of irradiation. Both entropy and energetic factors were included in chemical potential of the regarded system. The main regularities of irradiation influence on the solubility of solid in liquids were obtained.

Keywords: irradiation, phase transition, multicomponent system.

References:

1. V.M. Novikov et al. Molten salt nuclear power plants (NPP). In: Nuclear Energy. Prospects and Problems. Physics and Technology of Nuclear Reactors (Moskva: Energoatomizdat, 1990). (Rus)

2. M.W. Rosenthal, R.B. Briggs, P.N. Haubenreich. Molten salt reactor program: Semiannual progress report for period ending August 31, 1970. ORNL-4622 (Oak Ridge National Laboratory, 1971). http://moltensalt.org/references/static/downloads/pdf/ORNL-4622.pdf

3. S.A. Bznuni, V.S. Barashenkov, A.N. Sosnin. Perspective Accelerator Driven Systems. Phys. Elementary Part. At. Nuclei 34(4) (2003) 977. (Rus) http://wwwinfo.jinr.ru/publish/Archive/Pepan/v-34-4/v-34-4-4.pdf

4. I.G. Draganic. Radiolysis of water: a look at its origin and occurrence in the nature. Radiation Physics and Chemistry 72(2) (2005) 181. https://doi.org/10.1016/j.radphyschem.2004.09.012

5. T. Palfi, L. Wojnarovits, E. Takacs Calculated and measured transient product yields in pulse radiolysis of aqueous solutions: Concentration dependence. Radiation Physics and Chemistry 79(11) (2010) 1154. https://doi.org/10.1016/j.radphyschem.2010.06.004

6. K. Trachenko. Understanding resistance to amorphization by radiation damage. Journal of Physics: Condensed Matter 16(49) (2004) R1491. https://doi.org/10.1088/0953-8984/16/49/R03

7. K. Trachenko, E. Zarkadoula, I.N. Todorov et al. Modeling high-energy radiation damage in nuclear and fusion applications. Nucl. Instrum. Methods Phys. Res. B 277 (2012) 6. https://doi.org/10.1016/j.nimb.2011.12.058

8. L. Malerba, M.C. Marinica, N. Anento et al. Comparison of empirical interatomic potentials for iron applied to radiation damage studies. Journal of Nuclear Materials 406(1) (2010) 19. https://doi.org/10.1016/j.jnucmat.2010.05.017

9. I.A. Shkrob, T.W. Marin, M.L. Dietz On the radiation stability of crown ethers in ionic liquids. The Journal of Physical Chemistry B115(14) (2011) 3903. https://doi.org/10.1021/jp200307h

10. K. Trachenko, M.T. Dove, E. Salje et al. Radiation damage in the bulk and at the surface. Molecular Simulation 31(5) (2005) 355. http://dx.doi.org/10.1080/08927020500066825

11. V.V. Brazhkin, Yu.D. Fomin, A.G. Lyapin et al. Liquid-gas transition in the supercritical region: Fundamental changes in the particle dynamics. Phys. Rev. Lett. 111 (2013) 145901. https://doi.org/10.1103/PhysRevLett.111.145901

12. A.K. Pikaev, V.I. Spitsyn. Modern Radiation Chemistry: The radiolysis of gases and liquids (Moskva: Nauka, 1986). (Rus)

13. D.N. Zubarev. Nonequilibrium Statistical Thermodynamics (New York: Consultants Bureau, 1974) 489 p. Google Books

14. M. Kac. Probability and related topics in physical sciences. Lectures in Applied Mathematics 1 (1959).

15. I. Prigogine. Mechanics (New York: N. E. S. Interscience Publishers, 1962).

16. I. Prigogine. Introduction to thermodynamics of irreversible processes (New York: Interscience Publishers, 1967). Amazon

17. S.R. de Groot, P. Mazur. Non-equilibrium thermodynamics (Courier Corporation, 2013). Google Books

18. L.A. Bulavin, D.A. Gavryushenko, V.M. Sysoyev. Molecular Physics (Kyiv: Znannya, 2006). (Ukr) Book

19. D. Kondepudi, I. Prigogine. Modern Thermodynamics: from heat engines to dissipative structures (New York: John Wiley & Sons, 2014). Book

20. P.A. Selishchev. Self-organization in Radiation Physics (Kyiv: Aspekt-Poligraf, 2004) 240 p. (Rus) Google Books

21. L.A. Bulavin, D.A. Gavryushenko, P.A. Selishev, V.M. Sysoev. Nucl. Phys. At. Energy 2(24) (2008) 53. http://jnpae.kinr.kiev.ua/24(2)/Articles_PDF/jnpae-2008-2(24)-0054-Bulavin.pdf

22. M.P. Kozlovskii. The effect of finite size of the system on correlation length behaviour at the presence of external field. Condensed Matter Physics 10(2) (2007) 173. https://doi.org/10.5488/CMP.10.2.173

23. M.P. Kozlovskii, R.V. Romanik. The order parameter and susceptibility of the 3D Ising-like system in an external field near the phase transition point. Condensed Matter Physics 13(4) (2010) 43004. https://doi.org/10.5488/CMP.13.43004

24. K. Trachenko, J.M. Pruneda, E. Artacho, M.T. Dove. How the nature of the chemical bond governs resistance to amorphization by radiation damage. Phys. Rev. B 71 (2005) 184104. https://doi.org/10.1103/PhysRevB.71.184104

25. V.A. Durov, E.P. Ageev. The thermodynamic theory of non-electrolyte solutions (Moskva: MGU, 1987). (Rus)

26. V.M. Sysoev, S.A. Terletskij. Zhurn. Fiz. Khim. 58(2) (1984) 370. (Rus)

27. N.A. Atamas, L.A. Bulavin, V.I. Kovalchuk. Influence of radiation on the local structure in a NaCl aqueous solution. Ukrainian Journal of Physics 60(5) (2015) 422. https://doi.org/10.15407/ujpe60.05.0422

28. M.P. Allen M.P., D.Y. Tildesley. Computer Simulation of Liquids (Oxford: Clarenton Press, 2010). Google Books