Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 3, pages 302-307.
Section: Radiobiology and Radioecology.
Received: 12.04.2016; Accepted: 29.06.2016; Published online: 13.12.2016.
PDF Full text (en)
https://doi.org/

The functional state of cellular antioxidant defence system of shoots of Arabidopsis thaliana exposed to the chronic ionizing radiation in the Chornobyl exclusion zone

V. S. Morozova, V. A. Kashparov, S. Ye. Levchuk, A. O. Umanska, Ye. V. Bishchuk, L. M. Otreshko*

National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: otreshkol@ukr.net

Abstract: The functional state of the cellular antioxidant defence system of shoots of Arabidopsis thaliana plants that grow in natural conditions in the areas of the Chornobyl Exclusion Zone with the values of the external dose rate of 0.45, 0.61, 1.05, 4.81 and 6.80 μGy/h was evaluated. The decrease of the content of thiobarbituric acid reactive compounds in the shoots of Arabidopsis thaliana was revealed under the external dose rate of 4.81 and 6.80 μGy/h by 38 and 48 %, respectively, compared to this parameter value under the external dose rate of 0.45 μGy/h. In the investigated samples the capacity of guaiacol peroxidase increases, catalase and ascorbate peroxidase decreases significantly with the increase of the external dose rate from 0.45 to 6.80 μGy/h. Probably, revealed changes in the functional state of the cellular antioxidant defence system of the shoots of Arabidopsis thaliana in the conditions of radioactive contamination are adaptive in nature.

Keywords: Arabidopsis thaliana, external dose rate, Chornobyl, cellular antioxidant defence system, lipid peroxidation, reactive oxygen species, enzymes.

References:

1. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience: Report of the Chernobyl forum expert group Environment. Ed. By L. Anspaugh and M. Balonov (Vienna: International Atomic Energy Agency, 2011) 180 p. Report

2. The Fukushima Daiichi accident (Vienna: International Atomic Energy Agency, 2015) 1254 p. IAEA

3. S.V. Fesenko, R.M. Alexakhin, S.A. Geraskin et al. Comparative radiation impact on biota and man in the area affected by the accident at the Chernobyl nuclear power plant. Journal of Environmental Radioactivity 80 (2005) 1. https://doi.org/10.1016/j.jenvrad.2004.08.011

4. P. Andersson, J. Garnier-Laplace, N.A. Beresford et al. Protection of the environment from ionising radiation in a regulatory context (project): proposed numerical benchmark values. Journal of Environmental Radioactivity 100 (2009) 1100. https://doi.org/10.1016/j.jenvrad.2009.05.010

5. R.J. Pentreath. Radioecology, radiobiology, and radiological protection: frameworks and fractures. Journal of Environmental Radioactivity 100 (2009) 1019. https://doi.org/10.1016/j.jenvrad.2009.06.004

6. S.A. Geras'kin, S.V. Fesenko, R.M. Alexakhin. Effects of non-human species irradiation after the Chernobyl NPP accident. Environment International 34 (2008) 880. https://doi.org/10.1016/j.envint.2007.12.012

7. Environmental Protection: the Concept and Use of Reference Animals and Plants. The International Commission on Radiological Protection, ICRP Publication 108, Elsevier, 2008. 242 p. ICRP

8. J.E. Brown, B. Alfonso, R. Avila et al. The ERICA Tool. Journal of Environmental Radioactivity 99 (2008) 1371. https://doi.org/10.1016/j.jenvrad.2008.01.008

9. V.I. Abramov, O.M. Fedorenko, V.A. Shevshenko. Genetic consequences of radioactive contamination for population of Arabidopsis. Science of the Total Environmental 112 (1992) 19. https://doi.org/10.1016/0048-9697(92)90234-J

10. I. Kovalchuk, V. Abramov, I. Pogribny, O. Kovalchuk. Molecular Aspects of Plant Adaptation to Life in the Chernobyl Zone. Plant Physiol. 135 (2004) 357. https://doi.org/10.1104/pp.104.040477

11. A-M. Baird, K.J. OByrne, S.G. Gray. Reactive Oxygen Species and Reactive Nitrogen Species in Epigenetic Modifications. In: Systems Biology of Free Radicals and Antioxidants. Part 1. Ed. by I. Laher (Berlin - Heidelberg: Springer, 2014) p. 437. https://doi.org/10.1007/978-3-642-30018-9_32

12. D.M. Grodzynsky, M.I. Gusha, O.P. Dmitriev et al. Radiobiological effects of chronic ionizing radiation in the zone affected by the Chernobyl accident (Kyiv: Naukova dumka, 2008) 373 p. (Ukr)

13. D. Spadaro, B.-W. Yun, v Spoel et al. The Redox Switch: Dynamic Regulation of Protein Function by Cysteine Modifications. Physiol. Plant. 138 (2010) 360. https://doi.org/10.1111/j.1399-3054.2009.01307.x

14. V.D. Kreslavski, D.A. Los, S.I. Allakhverdiev, V.V. Kuznetsov. Signalling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology 59 (2012) 163. (Rus)

15. Y.Y. Kolupaev, A.I. Oboznyi. Reactive oxygen species and antioxidant system in the cross-action adaptation of plants to abiotic stressors. Newsletter of V.V. Dokuchaev Kharkiv National Agrarian University 3 (2013) 18. (Ukr) Paper

16. I.K. Kolomiytseva. Nonmonotonic of the dose-effect dependence at low doses of ionizing radiation. Radiatsionnaia Biologiia, Radioecologiia 43 (2003) 179. (Rus)

17. J. Ren, L. Liu, X.L. Jin et al. Physiological and morphological responses induced by α-particle radiation on Arabidopsis thaliana embryos. Genetics and Molecular Research 13 (2014) 9569. https://doi.org/10.4238/2014.November.12.5

18. H. Vandenhove, N. Vanhoudt, A. Cuypers et al. Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiology Biochemistry 48 (2010) 778. https://doi.org/10.1016/j.plaphy.2010.06.006

19. N. Vanhoudt, N. Horemans, J. Wannijn et al. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. Journal of Environmental Radioactivity 129 (2014) 1. https://doi.org/10.1016/j.jenvrad.2013.11.011

20. Guidelines for determination of strontium-90 and cesium-137 in soils and plants (Moskva: CINAO, 1985) 46 p. (Rus)

21. N. Vanhoudt, A. Cuypers, N. Horemans, T. Remans et al. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions. Journal of Environmental Radioactivity 102 (2011) 638. https://doi.org/10.1016/j.jenvrad.2011.03.013

22. J-S. Venisse, G. Gullner, M-N. Brisset. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology 125 (2001) 2164. https://doi.org/10.1104/pp.125.4.2164

23. H.U. Bergmeyer, K. Gawehn, M. Grassl. Enzymes as Biochemical Reagents. Methods of Enzymatic Analysis. Ed. by H. U. Bergmeyer (New York: Academic Press, 1974) 425 p. Google Books

24. M.M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1976) 248. https://doi.org/10.1016/0003-2697(76)90527-3

25. A.K. Savinskij, V.I. Popov, V.A. Kuljamin. LET Spectra and Quality Coefficients of Incorporated Radionuclides (Moskva: Energoatomizdat, 1986) 143 p. (Rus)