1. NUCLEAR g-FACTORS AND STRUCTURE OF THE HIGH-SPIN ISOMERS IN ^{190,192,194}Pt

A. I. Levon, I. B. Kovgar, Yu. V. Nosenko, V. A. Onischuk, A. A. Schevchuk

Integral perturbed angular distribution method in an external magnetic field has been used to measure the g-factors of isomers in the ^{190,192,194}Pt, populated in the (α , 2n)-reaction. The results are as follows: ¹⁹⁰Pt, g(12⁺) = -0,17(12), g(10⁻) = -0,0016(36), g(7⁻) = +0,62(9); ¹⁹²Pt, g(12⁺) = -0,18(9), g(10⁻) = -0,0012(10), g(7⁻) = 0,48(12); ¹⁹⁴Pt, g(12⁺, new assignment) = 0,17(7), g(7⁻) = +0,26(8). The 12⁺ states have the rotational-aligned (vi⁻²_{13/2}) structure. The missing rotation-aligned (vi⁻²_{13/2})12⁺ state is suggested to be isomeric in ¹⁹⁴Pt (instead of the 10⁺ state) and to which the g = -0,17(6) value has to be attributed. From the g-factors of the 10⁻ states in ¹⁹⁰Pt and ¹⁹²Pt, which have the configuration v9/2⁻[505] \otimes v11/2⁺[615], the anomalous g₁-factor for neutrons has been derived as $\delta g_1 = -0,028(6)$. Positive values of g-factors of the 7⁻ isomers confirm the prediction of the non-axial rotor + 2 quasiparticles model about the change of the intrinsic structure from mainly (vi_{13/2}, vj) to mainly ($\pi h_{11/2}$, πj) in transition from Hg to Pt nuclei.