УДК 539.144; 539.172

ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ЗБУДЖЕНИХ СТАНІВ ІЗОТОПІВ ГЕЛІЮ В РЕАКЦІЯХ ^{6,7}Li(d, ^{3,4,6}He) ПРИ ЕНЕРГІЇ ДЕЙТРОНІВ 37 МеВ

Ю. М. Павленко, О. К. Горпинич, В. М. Добріков, Н. Л. Дорошко, В. О. Кива, І. М. Коломієць, В. І. Медведєв, Вал. М. Пірнак

Інститут ядерних досліджень НАН України, Київ

У кінематично повних та неповних експериментах при енергії дейтронів 37 МеВ досліджено процеси утворення у вихідних каналах реакцій ^{7,6}Li(d, ^{3,4,6}He) стабільних та нестабільних станів ядер віддачі ³⁻⁶He. Визначено перерізи утворення основних та ряду збуджених станів цих ядер, а також досліджено можливі механізми формування спостережуваних в інклюзивних спектрах ядер ^{3,4,6}He континуумів. З аналізу даних інклюзивних та ексклюзивних експериментів визначено ймовірність розпаду в реакції ⁷Li(d, ⁴He)⁵He резонансу ⁵He*(16,75 MeB) в канал d + t, значення якої суттєво відрізняється від даних, отриманих при дослідженні бінарних реакцій.

Вступ

Взаємодія дейтронів з ізотопами літію детально досліджувалася при низьких енергіях [1 - 3] у зв'язку з розробкою різних концепцій виробництва енергії, оскільки реакції ^{7,6}Li(d, ⁴He) мають значний позитивний енергетичний баланс. Реакції ^{7,6}Li(d, ³He) досліджено лише в кількох експериментах при енергіях дейтронів до 22 MeB [4, 5]. У [6] при E_d = 30,7 MeB з метою визначення кластерної структури першого збудженого стану ⁶He вимірювалися кореляції ядер ³He з α-частинками з розпаду цього стану в реакції ^{7,6}Li(d, ³He). Реакції ^{7,6}Li(d, ⁶He) до цього часу не досліджувалися.

Взаємодія дейтронів з енергією ≥ 30 МеВ з ядрами літію характеризується широким спектром ядерних перетворень завдяки великій кількості відкритих каналів реакцій, у яких утворюються як стабільні, так і нестабільні стани ядер. У даній роботі аналізуються диференціальні перерізи реакцій з виходом ^{3,4,6}Не

$$d + {}^{6}Li \rightarrow {}^{3}He + {}^{5}He, \qquad (1)$$

$$d + {}^{6}Li \rightarrow {}^{4}He + {}^{4}He, \qquad (2)$$

 $d + {}^{6}Li \rightarrow {}^{6}He + {}^{2}He, \qquad (3)$

$$d + {}^{7}Li \rightarrow {}^{3}He + {}^{6}He, \qquad (4)$$

$$d + {}^{7}Li \rightarrow {}^{4}He + {}^{5}He, \qquad (5)$$

$$d + {^7Li} \rightarrow {^6He} + {^3He}, \qquad (6)$$

які вимірювалися в кінематично повних та неповних експериментах при енергії дейтронів 37 МеВ. Основна мета роботи полягає у визначенні характеристик енергетичних станів ядер ³⁻⁶Не, які можуть утворюватися у вихідних каналах реакцій (1) - (6).

Майже всі енергетичні стани ізотопів ³⁻⁶Не є нестабільними, за виключенням основних станів

ядер ^{3,4}Не. Ядро ⁵Не вже в основному стані є незв'язаною системою, що розпадається на α -частинку та нейтрон. Окрім стабільних ядер ^{3,4}Не в експерименті реєструвалися β-радіоактивні ядра ⁶Не (T_{1/2} = 808 мкс). Перелік каналів реакцій (1) - (6) з виходом ізотопів гелію можна доповнити реакцією ⁷Li(d, ⁷He)²Не, але ідентифікація внеску цієї реакції можлива лише в кореляційних експериментах, оскільки не існує зв'язаних станів ядер ⁷Не та ²Не, а кінцевий стан реакції є чотиричастинковим (⁶Не, нейтрон та два протона).

Характерною ознакою існуючих даних щодо резонансних станів ³⁻⁶Не є їх неузгодженість [1 -3, 7]. Основні дані отримано при дослідженні бінарних реакцій або при неповному визначенні кінематики тричастинкових. У першому випадку вони утворюються як складені проміжні системи при резонансних значеннях енергії взаємодії складових частинок (кластерів) досліджуваного ядра, а у другому – як ядра віддачі, розпад яких у той чи інший канал не фіксується в експерименті, а інформацію про їх збудження отримують з енергетичних спектрів частинок 1, які є продуктами тричастинкової реакції

$$p + T \rightarrow 1 + R \rightarrow 1 + 2 + 3, \tag{7}$$

де R – резонанс ядра віддачі; 2 і 3 – продукти розпаду цього резонансу. Вимірювання інклюзивних спектрів частинок 1 не забезпечує повного визначення кінематики реакцій (7), що є причиною певної невизначеності результатів аналізу експериментальних даних.

У вихідному каналі реакції (6) утворюється ядро віддачі ³Не, яке при енергії $E_d = 37$ MeB може збуджуватися до $E^* = 24$ MeB. Величина енергії зв'язку протона та дейтрона в ядрі ³Не становить 5,493 MeB [8]. В інклюзивних спектрах ядер ⁶Не при енергіях, що відповідають $E^*({}^{3}\text{He}) > 5,493$ MeB, можна спостерігати внесок процесу збудження незв'язаних (резонансних) станів ядер у підсистемі "протон - дейтрон". Пошуку збуджених станів ядер ³Не та ³Н присвячено кілька десятків робіт, але згідно з оглядами [7, 8] однозначних свідчень про існування резонансів цих тринуклонних систем немає.

З порівняння наведених у [1 - 3] даних видно, що за останній час схеми рівнів ядер ⁴⁻⁶Не суттєво доповнено новими рівнями, які виявлено при дослідженні реакцій типу (7), здебільшого у кінематично неповних експериментах. Виявлені рівні мають ширини $\Gamma = 2 - 5$ МеВ. Потребує уточнення механізм формування резонансоподібної структури інклюзивних спектрів продуктів реакцій типу (7), оскільки їх тричастинковий кінцевий стан може зумовлюватися як збудженням резонансів ядра віддачі R, так і супутніми процесами утворення й розпаду в канал 1 + 2 чи 1 + 3 резонансів інших ядер [9].

⁴⁻⁶He Ялра при енергіях збудження $E(^{4}He)^{*} > 20,6 MeB,$ $E(^{5}He) * > 16,7 MeB,$ E(⁶He)* > 12,3 MeB можуть розпадатися по кількох каналах. Експериментальні дані про розподіл гілок розпаду незв'язаних станів ядер, які збуджуються в тричастинкових реакціях, на цей час відсутні. Це стосується й "термоядерного резонансу" ⁵He*(16,75 MeB), який детально досліджувався в бінарних реакціях, зокрема в реакції $d + t \rightarrow \alpha + n$ [10 - 12] та при пружному розсіянні нейтронів ядрами ⁴Не [13]. У даній роботі вперше досліджується розпад "термоядерного резонансу" в канал d + t у тричастинковій реакції (5).

Умови проведення експерименту

Диференціальні перерізи реакцій (1) - (6) вимірювалися на ізохронному циклотроні У-240 Інституту ядерних досліджень НАН України на виведеному пучку дейтронів з енергією 37 МеВ. Мішені виготовлялися прокатом літієвих плівок із природним вмістом ^{6,7}Li та ізотопнозбагаченим (до 95 %) вмістом ⁶Li. Товщина мішеней становила 1,5 мг/см². Реєстрація, вимірювання енергії та ідентифікація продуктів реакцій здійснювалися за допомогою ΔE - Е-методики з використанням чотирьох телескопів напівпровідникових детекторів, товщини яких становили 50 мкм для ΔЕ- та 550 мкм для Е-детекторів відповідно. Товщина ΔЕ-детекторів вибиралася таким чином, щоб максимально знизити енергетичний поріг реєстрації продуктів реакцій при збереженні їх розділення за масою.

Тілесні кути реєстрації двох телескопів детекторів, які використовувалися для вимірювань інклюзивних спектрів ^{3,4,6}Не, становили $\Omega_1 = 0,65 \cdot 10^{-3}$ ср, $\Omega_2 = 0,92 \cdot 10^{-3}$ ср. Для забезпечення

високої ефективності реєстрації продуктів розпаду досліджуваних резонансів у реакціях (1) - (6) використовувалися телескопи з великими тілесними кутами: $\Omega_3 = 1,14 \cdot 10^{-2}$ ср, $\Omega_4 = 1,82 \cdot 10^{-2}$ ср. Сумарна енергетична роздільна здатність реєстрації продуктів реакцій визначалася в основному розкидом енергії пучка прискорювача та втратами енергії продуктів реакцій у мішені й становила 1,4 % від значення енергії прискорених частинок.

Накопичення, зберігання та аналіз подій, що реєструвалися, здійснювались за допомогою методики, яку викладено в [14]. Експериментальна установка забезпечувала реєстрацію подій від кожного з телескопів детекторів $E_i \times \Delta E_i \times N_D$ (і – номер телескопу, E_i – енергії продуктів реакції, що реєструються цими телескопами, ΔE_i – втрати енергії частинок у відповідних ΔE -детекторах, N_D – код-ідентифікатор телескопів), а також багатовимірний аналіз подій збігів від різних пар телескопів детекторів $E_i \times \Delta E_i \times E_j \times \Delta E_j \times t_{ij} \times N_D$, де і, ј – номери ввімкнених у схему збігів телескопів, N_D – код-ідентифікатор пари телескопів, t_{ij} – часовий спектр збігів.

Рис. 1. (Е - Δ Е)-спектр продуктів реакцій ⁷Li(d, ^{3,4,6}He), що вимірювався під кутом $\Theta_{\rm лск}$ = 22,5°. Стрілками з цифрами позначено внески реакцій: $I - {}^{7}$ Li(d, ³He)⁶He_{o.c.}, $2 - {}^{7}$ Li(d, ³He)⁶He*(1,8 MeB), $3 - {}^{7}$ Li(d, ⁶He)³He_{o.c.}. Суцільна лінія – контур маски для сортування подій, що відповідають реєстрації ядер ³He. У правому верхньому куті рисунка – фрагмент спектра в області внеску основного та першого збудженого станів ⁶He в реакції (4).

Типовий (Е - Δ E)-спектр продуктів взаємодії дейтронів з ядрами літію показано на рис. 1. Двовимірні гістограми отримано в різних режимах сортування накопичених подій. Першу з них (повний спектр ізотопів гелію) отримано без сумування амплітуд сигналів з Δ E- та E-детекторів, другу – з сумуванням цих амплітуд. Ізотопи ^{3,4,6}Не надійно розділяються за масою, що видно з гістограми ділянки спектра, яка містить події, що відповідають утворенню основного та першого збудженого станів ядра віддачі ⁶Не в реакції (4).

Енергетичні спектри ядер ^{3,4,6}Не у вигляді одновимірних гістограм отримувалися сортуванням зареєстрованих подій з обмежувальними масками, які відповідають в (Е - Δ E)-спектрах реєстрації відповідного ізотопу. Отримані за вказаною процедурою спектри ^{3,4,6}Не наведено на рис. 2 та 3.

Рис. 2. Енергетичні спектри продуктів реакцій: $a - {}^{7}\text{Li}(d, {}^{3}\text{He}), \delta - {}^{7}\text{Li}(d, {}^{6}\text{He}).$ Спектри вимірювалися під кутом $\Theta_{\text{лск}} = 22,5^{\circ}$.

Рис. 3. Інклюзивні спектри продуктів реакцій ^{6,7}Li(d, ^{3,4}He), що вимірювалися під кутом Θ_{лск} = 20°. Стрілками позначено положення основних та збуджених станів ядер віддачі ⁴⁻⁶He.

Оскільки в експерименті використовувалася мішень з природним вмістом ⁷Li, у спектрах ^{3,4}Не з реакцій ⁷Li(d, ^{3,4}He) фоновий вихід цих частинок, зумовлений наявністю в мішені ізотопу ⁶Li

(7 %), визначався за допомогою спектрів ^{3,4}Не, отриманих для ізотопно-збагаченої мішені ⁶Li (див., наприклад, рис. 3, δ , ϵ). Ці спектри після нормування на коефіцієнт, що визначався відношенням виходів реакції ${}^{6}Li(d, {}^{3}He){}^{5}He_{o.c.}$ та ${}^{6}Li(d, {}^{4}He){}^{4}He_{o.c.}$ для обох мішеней, віднімалися від спектрів, отриманих для мішені з природним вмістом ${}^{7}Li$.

Аналіз даних кореляційних експериментів полягав у виконанні ряду процедур сортування багатопараметричних подій, накопичених для чотирьох увімкнених попарно в схему часових збігів телескопів детекторів. Відбір необхідного типу частинок, як і у випадку інклюзивних експериментів, здійснювався шляхом сортування ΔE - Е-спектрів для кожного з телескопів детекторів та виділення в них відповідних обмежувальних масок. Важливим елементом кореляційних експериментів є аналіз часових розподілів подій.

Часовий спектр збігів усіх продуктів багаточастинкових каналів реакцій $d + {}^{7}Li$ показано на рис. 4. Область спектра, позначена цифрою 1, відповідає реєстрації двох продуктів реакцій, які утворюються при взаємодії з ядрами мішені дейтронів з одного згустку, і містить події дійсних та випадкових часових збігів. Внесок останніх можна визначити за кількістю збігів в областях спектра, позначених цифрою 2. Ці події відповідають реєстрації двох продуктів взаємодії з ядрами мішені бомбардуючих дейтронів із різних згустків. З рис. 4, *а* видно, що кількість дійсних збігів у часовому спектрі значно перевищує фон випадкових збігів, який практично відсутній у спектрі збігів двох α -частинок (див. рис. 4, δ).

Рис. 4. Сумарний часовий спектр збігів продуктів багаточастинкових каналів реакцій d + ⁷Li, що реєструвалися під кутами Θ₁ = 45°, Θ₂ = 79°, φ₁ - φ₂ = 180° (*a*). Часовий спектр αα-збігів, що реєструвалися під тими ж кутами (б).

Аналіз інклюзивних спектрів

В інклюзивних спектрах ізотопів ^{3,4}Не, що вимірювалися в діапазоні кутів $\Theta_{\rm лск} = 15 - 62^{\circ}$, ідентифіковано внески процесів утворення у вихідних каналах реакцій (1) - (6) основних та збуджених станів ядер віддачі ⁴⁻⁶Не. Як видно зі спектрів на рис. 3, усі незв'язані стани цих ядер спостерігаються на фоні континуумних розподілів, які визначають основний вихід ізотопів ^{3,4}Не. Формування спостережуваних в отриманих спектрах континуумів може бути зумовлено кількома механізмами, а саме: збудженням широких резонансів ядер віддачі, статистичним процесом утворення трьох чи чотирьох невзаємодіючих частинок та розпадом резонансів у супутніх каналах реакцій.

Енергетична залежність диференціальних перерізів реакцій (7), які вимірюються у кінематично повних експериментах, визначається тричастинковою амплітудою *T*₁₂₃ [15]:

$$\frac{d^{3}\sigma}{d\Omega_{1}d\Omega_{2}dE_{1}} = C\rho_{2}(E_{1})\left|T_{123}\right|^{2}, \quad (8)$$

$$T_{123} = T_{12} + T_{13} + T_{23}, \qquad (9)$$

де T_{12} , T_{13} , T_{23} – амплітуди, що відповідають взаємодії всіх трьох пар частинок кінцевого стану реакції; $\rho_2(E_1)$ – фактор фазового простору [16] у випадку, коли визначаються імпульси двох продуктів реакції (1 і 2); C – коефіцієнт, який не залежить від енергії E_1 .

В інклюзивних експериментах визначаються диференціальні перерізи, які є результатом інтегрування перерізу (8) по всіх можливих кутах емісії частинки 2 (або 3):

$$\frac{d^2\sigma}{d\Omega_1 dE_1} = C\rho_1(E_1) \int d\Omega_2 \left| T_{123} \right|^2, \quad (10)$$

де $\rho_1(E_1)$ – фактор фазового простору [16], що відповідає реєстрації тільки однієї частинки 1 і

визначає енергетичну залежність перерізу (10) у випадку утворення трьох невзаємодіючих частинок ($T_{123} = \text{const}$).

При відсутності взаємодії пар частинок 1 + 2та 1 + 3 ($T_{12} = 0$, $T_{13} = 0$) переріз збудження ядер віддачі, що розпадаються в канал 2 + 3, можна описати простою формулою Брейта - Вігнера

$$\frac{d^2\sigma}{d\Omega_1 dE_1} = C\rho_1 |T_{23}|^2 = \rho_1 \frac{C}{(E_{2-3} - E_R)^2 + (\frac{\Gamma}{2})^2},$$
(11)

де E_{2-3} – енергія відносного руху пари частинок 2-3; $E_{\rm R}$ – резонансне значення цієї енергії; Г – ширина резонансу.

Спрощену процедуру інтегрування перерізів (8) для загального випадку ($T_{12} \neq 0$, $T_{13} \neq 0$) у наближенні відсутності інтерференційних явищ та ізотропності збудження й розпаду резонансів, що розпадаються в канали 1 + 2 та 1 + 3, викладено в [9]. За вказаних умов диференціальний переріз (10) можна описати адитивною сумою внесків резонансної взаємодії у всіх трьох парах кінцевих частинок:

$$\frac{d^2\sigma}{d\Omega dE_1} = \sum_i C_i F_i + \sum_j C_j F_j + \sum_k C_k F_k , \qquad (12)$$

де F_i – енергетичні розподіли частинок 1, що відповідають резонансній взаємодії частинок 2 + 3 (переріз (11)); F_j , F_k – інтегральні розподіли частинок 1 з розпаду резонансів в парах 1 + 2 та 1 + 3 відповідно; C_i , C_j , C_k – вагові множники розподілів F_i , F_j , F_k .

Реакції ⁷Li(d, ³He) та ⁷Li(d, ⁶He)

В усіх виміряних спектрах ядер ³Не чітко видно внески процесів утворення основного та першого збудженого (E* = 1,8 MeB) станів ядра ⁶He (див. рис. 2, а та рис. 3, в). Аналіз кутових розподілів ⁷Li(d, ³He)⁶He_{o.c.} перерізів реакцій та ⁷Li(d, ³He)⁶He*(1,8 MeB) за методом зв'язаних каналів реакцій дозволив визначити, що домінуючим механізмом цих реакцій є передача протона [17]. Якщо внесок утворення ⁶Не_{о.с.} в енергетичних спектрах є ізольованим, то в області енергій ³Не, що відповідають енергіям збудження $E^{*}(^{6}He) > 0,97$ MeB, окрім внеску першого збудженого стану ⁶Не, спостерігається континуум, який може зумовлюватися збудженням широких рівнів ядра віддачі ⁶Не з $E^* > 2$ MeB, тобто реакцією

$$d^{+7}Li \rightarrow {}^{3}He + {}^{6}He^{*} \rightarrow {}^{3}He + {}^{4}He + 2n$$
 (13.1)

або розпадом резонансів ^{4,5}He*, ^{5,6}Li* та ⁷Be* в реакціях

$$d+^{\prime}Li \rightarrow {}^{4}He + {}^{5}He^{*} \rightarrow {}^{4}He + {}^{3}He + 2n, \qquad (13.2)$$

$$\rightarrow {}^{5}\text{He} + {}^{4}\text{He}^{*} \rightarrow {}^{4}\text{He} + n + {}^{3}\text{He} + n, \quad (13.3)$$

$$\rightarrow 2n + {^7}\text{Be}^* \rightarrow 2n + {^3}\text{He} + {^4}\text{He}, \qquad (13.4)$$

$$3^{3}H + {}^{6}Ii^{*} + {}^{3}H + {}^{3}He + {}^{3}H$$
 (13.5)

$$\rightarrow^{4}H + {}^{5}Li^{*} \rightarrow^{4}H + {}^{3}He + {}^{2}H$$
 (13.6)

Континуум у спектрах ³Не може також формуватися за рахунок статистичного процесу утворення невзаємодіючих між собою кінцевих продуктів реакцій (13.2) - (13.6). Максимально можливі внески цього механізму для реакцій (13.2) - (13.5) в енергетичний спектр ³Не показано на рис. 5. Розраховані розподіли ³Не не відповідають спостережуваній формі спектрів. Окрім того, згідно з результатами численних досліджень у реакціях з легкими ядрами суттєвого внеску цього механізму не виявлено [1, 2]. Зважаючи на це, подальший аналіз здійснювався без його врахування.

Рис. 5. Енергетичний спектр ядер ³Не ($\Theta = 20^{\circ}$) з реакції ⁷Li(d, ³He). Криві *I* - 4 відповідають розрахункам можливих внесків збудження резонансів ядра віддачі ⁶Не* (див. таблицю). Штрихова та штрихпунктирна лінії — максимально можливі внески процесу утворення невзаємодіючих частинок ³He + ⁴He + 2n у кінцевому стані реакцій (13.1) - (13.4) та ³H + ³He + ³H в реакції (13.5) відповідно.

З метою визначення можливих внесків процесів резонансної взаємодії в кінцевому стані реакцій (13.1) - (13.6) спектри ядер ³Не аналізувалися за методом найменших квадратів згідно з виразом (12). Результат розрахунку перерізів реакції (13.1) у припущенні існування чотирьох резонансів ⁶Не в діапазоні енергій збудження до 20 МеВ та відсутності внеску реакцій (13.2) - (13.6) ($F_j = 0, F_k = 0$) наведено на рис. 5 та в таблиці. Оскільки ширина першого збудженого стану ядра ⁶Не* ($\Gamma_1 = 113$ кеВ [2]) менша енергетичної роздільної здатності вимірювань, форма спектральної лінії, що відповідає цьому резонансу, розраховувалася за методом Монте-Карло, а параметром підгонки був лише коефіцієнт C_1 . Отримані з аналізу значення енергій збудження та ширин другого та третього збуджених станів ⁶Не узгоджуються з даними [2]. Значна частина внеску четвертого резонансу знаходиться поза порогом реєстрації ³Не навіть для малих кутів ($\Theta < 25^{\circ}$), тому отримані для цього резонансу параметри можуть розглядатися лише як оціночні.

Результати аналізу спектра ядер ³He (Θ = 20°) з реакції ⁷Li(d, ³He) за умов відсутності (друга колонка) та урахування (третя колонка) внеску реакцій (13.2) - (13.3)

Резонанси	$F_j = 0,$	$F_j \neq 0, F_k \neq 0$	Дані [2]
°Не	$F_k = 0$		
E_2^* , MeB	$6,2 \pm 0,2$	$5,4 \pm 0,3$	$5,6 \pm 0,3$
Γ_2 , MeB	$13,0 \pm 3,0$	$13,0 \pm 2,5$	$12,1 \pm 1,1$
(dσ/dΩ) ₂ , мб/ср	$1,46 \pm 0,02$	$1,23 \pm 0,03$	
E ₃ *, MeB	$5,2 \pm 0,3$	$15,1 \pm 0,4$	$14,6 \pm 0,7$
Γ ₃ , MeB	$9,4 \pm 1,2$	$7,4 \pm 0,9$	$7,4 \pm 1,0$
(dσ/dΩ) ₃ , мб/ср	$2,50 \pm 0,11$	$1,51 \pm 0,15$	
E ₄ *, MeB	$18,9 \pm 0,2$	$18,9 \pm 0,2$	$15,5 \pm 0,5$
Γ_4 , MeB	$3,7 \pm 0,6$	$3,9 \pm 0,8$	4 ± 2
(dσ/dΩ) ₄ , мб/ср	$1,08 \pm 0,04$	$1,22 \pm 0.07$	

Розраховані згідно з [9] енергетичні розподіли ядер ³Не з розпаду резонансних станів ⁵Не* \rightarrow ³He + 2n, ⁴He* \rightarrow ³He + n, ⁷Be* \rightarrow ³He + α , ⁶He* \rightarrow ³He + ³H та ⁵Li* \rightarrow ³He + d у реакціях (13.2) - (13.6) показано на рис. 6, *a*.

Утворення стану ⁵He* з E*~20 MeB спостерігалося в енергетичних спектрах α-частинок з реакції (13.2) (див. рис. 3, а). Для розрахунку енергетичного розподілу ядер ³Не з розпаду цього стану (крива 1 на рис. 6, a) використано середнє для кутового діапазону реєстрації α-частинок (Θ_{cIIM} =23–90°) значення перерізу його збудження $(d\sigma/d\Omega)_{cum} = 0,12$ мб/ср. Розрахунки показали, що ці розподіли для всіх кутів реєстрації ³Не мають резонансоподібну форму з шириною на половині висоти 10 МеВ і максимумами при енергіях, що відповідають збудженню ядра віддачі ⁶He*(16 MeB) у реакції ⁷Li(d, ³He)⁶He.

Дані з перерізів збудження станів ⁴Не* в реакції (13.3) відсутні і не можуть бути отримані звичайним способом, оскільки не існує стабільних станів ядра ⁵Не. Але спостереження стану ⁵Не* з $E^{*}\sim 20$ МеВ у вихідному каналі реакції ⁴Не + ⁵Не* дає підставу вважати можливим і збудження ядра ⁴Не* до енергій $E^{*} > 20$ МеВ у вихідному каналі реакції ⁵Не + ⁴Не*. Додатковим аргументом на користь такої можливості є спостереження збудження групи станів ⁴He^{*} з E^{*} = 21 - 23 MeB та широкого стану з E^{*} = 28,3 MeB у вихідному каналі реакції d + ⁶Li \rightarrow ⁴He + ⁴He^{*}. Значення перерізів збудження ((d σ /d Ω)_{сцм} \approx 0,05 мб/ср для кожного з перших трьох указаних рівнів та (d σ /d Ω)_{сцм} = 0,23 мб/ср для стану з E^{*} = 28,3 MeB), визначені зі спектра α-частинок із реакції ⁶Li(d, ⁴He)⁴He^{*} (див. рис. 3, *б*), було використано для оцінки можливого внеску реакції (13.3) (криві 2 - 5 на рис. 6, *а*). Спектри ³He для реакцій (13.4) -(13.6) розраховано у припущенні, що перерізи збудження ⁷Be^{*} та ⁶Li^{*} становлять 0,1 мб/ср, а ⁵Li^{*} – 0,03 мб/ср.

Результат параметризації спектра ядер ³Не з урахуванням фіксованого внеску реакцій (13.2) і (13.3) наведено на рис. 6, б. У розрахунках не враховано реакції (13.4) - (13.6) у зв'язку з тим, що згідно з [2] дані про збудження та розпад ⁷Ве* \rightarrow ³Не + α в реакції (13.4) та ⁶Li* \rightarrow ³He + ³H (Е*>15,795 МеВ) у реакції (13.5) відсутні, а максимальна енергія можливого внеску реакції (13.6) знаходиться поза порогом реєстрації ядер ³Не в даному експерименті.

З наведених у таблиці результатів аналізу видно, що врахування реакцій (13.2) і (13.3) призводить до зменшення значень визначених перерізів збудження другого та третього резонансних станів ⁶Не. Точне визначення перерізів збудження та резонансних характеристик станів ⁶Не з $E^* > 2$ MeB потребує розрахунків внеску всіх супутніх реакцій у формування спектрів ³Не з урахуванням анізотропності процесів збудження та розпаду незв'язаних станів ядер ^{4,5}Не^{*}, ^{5,6}Li^{*}, ⁷Be^{*}.

Внесок супутніх каналів реакцій в інклюзивні спектри продуктів тричастинкових реакцій (7) може бути ще вагомішим і в деяких випадках домінуючим. Зокрема, це стосується спектрів ядер ⁶He з реакції ⁷Li(d, ⁶He), результати аналізу яких наведено в [18]. В інклюзивних спектрах ⁶Не (див. рис. 2, δ), окрім внеску, що відповідає утворенню основного стану ядра ³He, спостерігається широкий розподіл подій в області енергій, які відповідають енергіям збудження ядра 'Не E* = 5,5 – 16 МеВ. Експериментальні спектри можна описати в припущенні існування резонансних станів ³Не з енергіями збудження $E^* = 8,9$, 13,1 та 15,8 МеВ. Але виконаний в [18] аналіз показав, що спостережувану структуру спектрів ⁶Не можна пояснити ймовірнішими процесами, а саме: збудженням та розпадом резонансів ядер $^{7}\text{Li}^{*} \rightarrow ^{6}\text{He} + p$, $^{8}\text{Li}^{*} \rightarrow ^{6}\text{He} + d$ Ta $^{7}\text{He} \rightarrow ^{6}\text{He} + n$ B $^{7}\text{Li}(d, d)^{7}\text{Li}^{*}$, $^{7}Li(d, p)^{8}Li^{*}$ реакціях та 'Li(d, 2p)'Не. Найбільший внесок може давати розпад ядер ⁷Li*, які збуджуються при непружному розсіянні дейтронів.

Рис. 6. Розрахунок перерізів реакцій (13.2) і (13.3) для кута емісії ядер ³Не Θ =20° (*a*): *1* – енергетичний розподіл ³Не з розпаду ядра ⁵Не*(E* = 19,8 MeB, Γ = 2,5 MeB [1, 2]) в реакції (13.2); *2* - *5* – спектри ³Не з розпаду в реакції (13.3) збуджених станів ⁴He* [3] (*2* – E* = 21,01 MeB, Γ = 0,84 MeB; *3* – E* = 21,84 MeB, Γ = 2,01 MeB; *4* – E* = 23,33 MeB, Γ = 5,01 MeB; *5* – E* = 28,3 MeB, Γ = 9,89 MeB); *6* – сумарний внесок реакцій (13.2), (13.3); *7* - *11* – спектри ³Не з розпаду в реакціях (13.4) - (13.6) резонансів [2] (*7* – ⁷Be*(E* = 4,57 MeB, Γ = 0,18 MeB); *8* – ⁷Be*(E* = 7,21 MeB, Γ = 0,4 MeB); *9* – ⁶Li*(E* = 17,99 MeB, Γ = 3,01 MeB); *10* – ⁵Li*(E* = 16,87 MeB, Γ = 0,27 MeB); *11* – ⁵Li*(E* = 20,5 MeB, Γ = 5,0 MeB)).

Результати параметризації спектра ³He ($\Theta = 20^{\circ}$) з урахуванням збудження резонансів ядра ⁶He* (*1* - *4*) та внеску реакцій (13.2) і (13.3) (5) (δ).

Збудження резонансів ядра ⁵Не в реакції ⁷Li(d,⁴He)

В отриманих для реакції (5) інклюзивних спектрах α -частинок (див. рис. 3, *a*, рис. 7, *a*) внески процесів утворення основного стану ядра ⁵Не та його збуджених станів (Е* = 16,75 та 20 МеВ) також спостерігаються на фоні континууму, яким зумовлено основний вихід α -частинок. Внесок першого збудженого стану з E*~3 MeB чіткого прояву у виміряних спектрах не має. Зі збільшенням кута реєстрації відношення перерізів збудження ⁵He*(16,75 і 20 MeB) до перерізів, що відповідають континууму, зменшується (див. рис. 7, *a*).

Рис. 7. Інклюзивні спектри α -частинок з реакції ⁷Li(d, α), що вимірювалися під кутами $\Theta = 25^{\circ}$ та 45° (*a*). Стрілками позначено положення резонансів ядра віддачі ⁵He ($I - {}^{5}$ He*(16,75 MeB); $2 - {}^{5}$ He*(20 MeB); 3 - II відповідають енергетичним розподілам α -частинок ($\Theta = 45^{\circ}$) з розпаду резонансів ядер 5,6 He, 6,7 Li, ⁸Be в реакціях (14.1) - (14.5): $3 - {}^{5}$ He(o.c.), $4 - {}^{5}$ He*(E*>16,75 MeB), $5 - {}^{8}$ Be*(3,0 MeB), $6 - {}^{8}$ Be*(16,6 MeB), $7 - {}^{7}$ Li*(4,63 MeB), $8 - {}^{7}$ Li*(7,45 MeB), $9 - {}^{7}$ Li*(9,85 MeB), $10 - {}^{6}$ Li*(2,18 MeB), $11 - {}^{6}$ He*(1,8 MeB); крива без позначень відповідає розрахунку фізичного фону. Спектр α -частинок ($\Theta = 45^{\circ}$) в області збудження станів ядра віддачі 5 He*(16,75 MeB) та 5 He*(20 MeB), отриманий після відрахування фізичного фону (δ). Криві відповідають розрахунку внесків станів 5 He* згідно з виразом (11).

При взаємодії дейтронів з ядрами ⁷Li джерелом емісії α-частинок, окрім реакції (5), можуть бути такі канали реакцій:

$$\rightarrow \alpha + {}^{5}\text{He} \rightarrow \alpha + \alpha + n,$$
 (14.1)

$$\rightarrow$$
 n + ⁸Be \rightarrow n + α + α , (14.2)

$$d + {^{7}Li} \rightarrow d + {^{7}Li}^* \rightarrow d + \alpha + t, \qquad (14.3)$$

$$\rightarrow t + {}^{\circ}L_{1}^{*} \rightarrow t + \alpha + d, \qquad (14.4)$$

$$\rightarrow$$
 ³He + ⁶He* \rightarrow ³He + α + 2n. (14.5)

Результати розрахунків спектрів α-частинок з розпаду незв'язаних станів ядер ^{5,6}Не, ^{6,7}Li, ⁸Ве в реакціях (14.1) - (14.5), виконаних згідно з [9], наведено на рис. 7, а. Спектри розраховано в припущенні, що перерізи збудження вказаних станів ядер однакові. Процеси утворення деяких з них, наприклад основного та збуджених станів ⁵Не та першого збудженого стану ядра ⁶Не, спостерігалися в даному експерименті. Розпад цих резонансів та збуджених станів ⁶Li*(2,18 MeB), ⁷Li*(4,63 MeB) було ідентифіковано також у кореляційних спектрах продуктів реакцій (14.1) -(14.5). Слід звернути увагу на особливості інклюзивних спектрів α-частинок, які можна пояснити тільки внеском супутніх реакцій. Наприклад, у спектрі, що вимірювався під кутом $\Theta = 45^{\circ}$, в області $E_{\alpha} \sim 30$ MeB спостерігається характерна "сходинка", якій відповідає внесок розпаду основного стану ядра ⁵Не (крива 3 на рис. 7, а).

Наведені аргументи свідчать про суттєвий внесок реакцій (14.1) - (14.5) в інклюзивні спектри α -частинок, але розрахунки їх сумарного внеску згідно з виразом (12) не забезпечують задовільного узгодження з експериментальними даними в області енергій, що відповідає утворенню високозбуджених станів ядра ⁵Не. З метою визначення перерізів збудження цих станів континуум у вказаній області спектрів апроксимувався поліноміальними функціями. Результат такої апроксимації фізичного фону для одного з спектрів ($\Theta = 45^{\circ}$) показано на рис. 7, *а*.

Спектр α-частинок в області збудження станів ядра віддачі ⁵He*(16,75 MeB) та ⁵He*(20 MeB), отриманий після відрахування фізичного фону, наведено на рис. 7, *б*. З аналізу цього спектра згідно з виразом (11) визначено енергії збудження та ширини другого і третього збуджених станів ядра ⁵He: E_2 * = 16,6 ± 0,2 MeB, Γ_2 = 0,7 ± 0,2 MeB; E_3 * = 19,6 ± 0,2 MeB, Γ_3 = 2,3 ± 0,2 MeB.

Розпад резонансів ядра ⁵He в реакції ⁷Li(d,⁴He)

Окрім інклюзивних спектрів ядер ^{3,4,6}Не в експерименті вимірювалися спектри збігів цих ядер з іншими продуктами багаточастинкових каналів реакцій d+^{6,7}Li. На рис. 8 наведено двовимірні спектри збігів двох α-частинок та α-частинок з тритонами у вихідних каналах реакцій ⁷Li(d, αα)n та ⁷Li(d, αt)d. Тілесні кути реєстрації продуктів реакцій під кутами $\Theta_1 = 45^\circ$, $\Theta_2 = 79^\circ$ становили $\Omega_1 = 0.92 \cdot 10^{-3}$ ср та $\Omega_2 = 1.82 \cdot 10^{-2}$ ср відповідно. Велике значення тілесного кута Ω_2 забезпечувало високу ефективність реєстрації продуктів розпаду резонансів ядер віддачі в реакціях (1) - (6), зокрема в реакції (5) першого збудженого стану ⁵Не* в канал α + n та другого збудженого стану ⁵Не* ("термоядерного резонансу") в канал d + t.

Рис. 8. Двовимірні спектри збігів продуктів реакцій ⁷Li(d, $\alpha\alpha$)n та ⁷Li(d, α t)d, що вимірювалися під кутами $\Theta_1 = 45^\circ, \Theta_2 = 79^\circ, \varphi_1 - \varphi_2 = 180^\circ.$

"Термоядерний резонанс" ⁵Не*(16,75 МеВ) є біляпороговим станом, енергія збудження якого перевищує поріг розпаду ⁵Не в канал d + t усього на 50 кеВ [1, 2]. Значно більший енергетичний баланс має канал розпаду α + n (Q = 17,6 MeB). У результаті збудження та розпаду ⁵Не*(16,75 MeB) у реакції (5) маємо такі тричастинкові канали реакцій:

$$d + {^{7}Li} \rightarrow | \rightarrow \alpha + {^{5}He^*} \rightarrow \alpha + \alpha + n,$$
 (15.1)

$$\rightarrow \alpha + d + t. \tag{15.2}$$

Розглянемо розпад другого збудженого стану ⁵He* в канал d + t детальніше, оскільки в тричастинкових реакціях цей канал розпаду ще не досліджувався. На рис. 9 показано спектри збігів продуктів реакцій ⁷Li(d, α t)d та ⁷Li(d, α d)t, отриманих за допомогою викладеної в [14] процедури відбору кореляційних подій. Найбільш інтенсивні піки в спектрах відповідають збудженню й розпаду резонансу ⁵He*(16,75 MeB) у реакції (15.2) та ⁶Li*(2,18 MeB), ⁷Li*(4,63 MeB) у реакціях (14.4) та (14.3) відповідно. Результати розрахунків внесків ⁵He*(16,75 MeB) та ⁶Li*(2,18 MeB) за методом Монте-Карло [19], які виконувалися з урахуванням реальних умов кореляційних вимірювань, показано на рис. 9 у вигляді гістограм. У середній частині спектрів можна спостерігати внески резонансів ⁵Не з енергіями збудження ~ 20 та 24 МеВ [1, 2], а також кількох резонансів ядер ⁶Li* (див. рис. 9, *a*) та ⁷Li* (див. рис. 9, δ).

Рис. 9. Кореляційні спектри α-частинок ($\Theta_{\alpha} = 45^{\circ}$), що відповідають реєстрації їх збігів з тритонами (*a*) та дейтронами (*b*) у реакціях ⁷Li(d, αt)d та ⁷Li(d, αd)t відповідно ($\Theta_{t(d)} = 79^{\circ}$, $\varphi_{\alpha} - \varphi_{t(d)} = 180^{\circ}$). Стрілками позначено положення внесків резонансів [1,2]: $I - {}^{5}$ He*(20 MeB); $2 - {}^{5}$ He*(24 MeB); $3 - {}^{6}$ Li*(2,18 MeB); $4 - {}^{6}$ Li*(4,31 MeB); $5 - {}^{6}$ Li*(5,37 MeB); $6 - {}^{6}$ Li*(5,65 MeB); $7 - {}^{7}$ Li*(4,63 MeB); $8 - {}^{7}$ Li*(6,68 MeB); $9 - {}^{7}$ Li*(7,45 MeB); $I0 - {}^{7}$ Li*(9,67 MeB); $I1 - {}^{7}$ Li*(9,85 MeB).

Інтегруванням по енергії отриманих в експерименті тричі диференціальних перерізів реакцій 7 Li(d, α t)d та 7 Li(d, α d)t в області внеску резонансу 5 He*(16,75 MeB) можна визначити перерізи

$$\frac{d^2\sigma}{d\Omega_{\alpha}d\Omega_{t(d)}} = \int \frac{d^3\sigma}{d\Omega_{\alpha}d\Omega_{t(d)}dE_{\alpha}} dE_{\alpha}, \quad (16)$$

які характеризують імовірність збудження цього резонансу та його розпаду в межах тілесного кута реєстрації тритонів (чи дейтронів) $\Omega_{t(d)}$. Оскільки апертура детектора, за допомогою якого реєструвалися продукти розпаду, не перекривала повний діапазон кутів розпаду в досліджуваний канал, за методом Монте-Карло було виконано розрахунки ефективності реєстрації (ефективного тілесного кута реєстрації) [19, 20] продуктів розпаду ⁵Не*(16,75 MeB) \rightarrow d + t у реакціях (15.1) і (15.2):

$$\varepsilon = N_{t(d)} / N_{5He^*}, \qquad (17)$$

де N_{5He^*} – змодельована кількість збуджених ядер ⁵He* (відповідна кількість α-частинок, що "реєструються" без збігів з тритонами чи дейтронами); $N_{t(d)}$ – кількість "зареєстрованих" збігів α-частинок з тритонами (дейтронами) із розпаду ⁵He*. Отримані значення ефективності реєстрації тритонів (є t = 0,56) та дейтронів (єd = 0,41) у припущенні ізотропності розпаду можна використати для оцінки диференціальних перерізів, що відповідають розпаду в усьому діапазоні можливих кутів $\Omega_{t(d)}$:

$$\frac{d\sigma_{dec}}{d\Omega_{\alpha}} = \frac{1}{\varepsilon_{t(d)}} \frac{d^2\sigma}{d\Omega_{\alpha}d\Omega_{t(d)}}.$$
 (18)

Переріз збудження ⁵Не*(16,75 МеВ) визначався з інклюзивних спектрів α -частинок, які також вимірювалися під кутом $\Theta_{\alpha} = 45^{\circ}$ (див. рис. 7, δ), інтегруванням по енергії в області внеску цього резонансу:

$$\frac{d\sigma_{exc}}{d\Omega_{\alpha}} = \int \frac{d^2\sigma}{d\Omega_{\alpha}dE_{\alpha}} dE_{\alpha} .$$
(19)

З відношення диференціальних перерізів (18) та (19) можна визначити ймовірність розпаду ⁵He*(16,75 MeB) у канал d + t [20]:

$$P(d+t) = \frac{d\sigma_{dec}}{d\Omega_{\alpha}} / \frac{d\sigma_{exc}}{d\Omega_{\alpha}}.$$
 (20)

Визначені згідно з (20) значення ймовірності розпаду ⁵Не*(16,75 МеВ) при реєстрації α t- та α d-збігів становлять 0,044 ± 0,009 та 0,043 ± 0,009 відповідно. Імовірність розпаду цього резонансу в бінарних реакціях можна оці-

нити з відношення $\Gamma_{td}/\Gamma = 0,34$ [10 - 13], де Γ_{td} – парціальна ширина розпаду в канал d + t, Γ – повна ширина резонансу. Зважаючи на те, що продукти розпаду ⁵He* в реакції (15.2) реєструвалися в межах великих тілесних кутів, які охоплювали близько 50 % повного діапазону можливих кутів розпаду, значна відмінність даних, отриманих у даній роботі та при дослідженні бінарних реакцій, не може бути зумовлена, на думку авторів, анізотропією процесу розпаду, яку не враховано при обчисленні перерізів (18).

Значне зменшення ймовірності розпаду ⁵Не* в реакції (15.2) можна пояснити впливом кулонівського поля супутньої α -частинки на розпад цього біляпорогового резонансу [16, 21, 22]. Подібний ефект спостерігався при дослідженні збудження резонансу ⁷Li*(7,45 MeB) у реакції ⁷Li(α , α)⁷Li* та його розпаду по каналах ⁶Li + n, α + t у реакціях ⁷Li(α , α ⁶Li)n, ⁷Li(α , $\alpha\alpha$)t [23]. З результатами [23] узгоджуються виконані в рамках розробленої в [16, 21, 22] модифікованої теорії взаємодії в кінцевому стані розрахунки з урахуванням впливу кулонівського поля супутнього ядра на процес розпаду резонансів в багаточастинкових реакціях [24].

Слід також зазначити, що при дослідженні реакції (15.1) у кінематично повному експерименті авторами [25] отримано значення ширини другого збудженого стану ⁵He*(16,75 MeB) (Γ = = 500 кеВ), яке суттєво відрізняється від даних для бінарних реакцій (Γ = 76 кеВ) [2, 10-13]. Для другого збудженого стану ⁵Li*(16,7 MeB), який також є біляпороговим, в інклюзивних спектрах α-частинок із реакції ⁶Li(³He, α)⁵Li* [26] спостерігалося зменшення ширини резонансу порівняно з даними для бінарних реакцій [1, 2].

Висновки

У кінематично повних та неповних експериментах при енергії дейтронів 37 МеВ досліджено реакції ^{7,6}Li(d, ^{3,4,6}He), у вихідних каналах яких утворюються стабільні та нестабільні стани ядер віддачі ³⁻⁶Не. Визначено перерізи утворення основних та ряду збуджених станів цих ядер, а також показано, що спостережуваний в інклюзивних спектрах ядер ^{3,4,6}Не континуум може формуватися за рахунок процесів розпаду по каналах ^{3,4,6}Не різних резонансних станів ізотопів гелію, літію та берилію, які утворюються в супутніх каналах реакцій. У деяких випадках енергетичні розподіли продуктів розпаду резонансів можна помилково інтерпретувати як прояв збудження резонансних станів ядер віддачі. Для коректного визначення параметрів резонансів, що збуджуються в багаточастинкових реакціях, необхідні комплексні дослідження в кінематично повних та неповних експериментах.

З аналізу даних інклюзивних та ексклюзивних експериментів визначено ймовірність розпаду в реакції ⁷Li(d, ⁴He)⁵He резонансу ⁵He*(16,75 MeB) в канал d + t, значення якої (0,044 \pm 0,009) суттєво відрізняється від даних, отриманих при дослідженні бінарних реакцій [10 - 13]. Виявлені в даній та інших роботах [23 - 26] аномальні властивості біляпорогових резонансів потребують подальших експериментальних та теоретичних досліджень.

Робота виконувалась за фінансовою підтримкою Міністерства освіти і науки України (грант Фонду фундаментальних досліджень 02.07/00244).

СПИСОК ЛІТЕРАТУРИ

- Ajzenberg-Selove F. Energy levels of light nuclei A = 5 - 10 // Nucl. Phys. A. - 1988. - Vol. 490, No. 1. - P. 1 - 225.
- Tilley D. R., Cheves C. M., Godwin J. L. et al. Energy levels of light nuclei A = 5,6,7 // Nucl. Phys. A. -2002. - Vol. 708, No. 1. - P. 3 - 163.
- Tilley D.R., Weller H.R., Hale G.M. Energy levels of light nuclei A = 4 // Nucl. Phys. A. - 1992. - Vol. 541, No. 1. - P. 1 - 104.
- Levine S.H., Bender R.S., McGruer J.N. Angular distributions of Deuteron-Induced Reactions in Lithium // Phys. Rev. - 1955. - Vol. 97, No. 5. -P. 1249 - 1254.
- Stokes R.H., Young P.G. Search for Excited States of ⁶He // Phys. Rev. C. - 1978. - Vol. 3. - P. 984- 991.
- Бочкарев О.В., Коршенинников А.А., Кузьмин Е.А. и др. Эмиссия «динейтрона» из возбужденного состояния ядра ⁶Не // Письма в ЖЭТФ. – 1985. - Т.42, вып. 7. - С. 303 - 305.

- Mëller K., Orlov Yu.V. Resonances in three-particle systems // Phys. of Elem. Part. and Atom. Nucl. - 1989. -Vol. 20, No. 6. - P. 1341 - 1395.
- *Tilley D.R., Weller H.R., Hasan H.H.* Energy levels of light nuclei A = 3 // Nucl. Phys. A. - 1987. -Vol. 474, No. 1. - P. 1 - 60.
- Немец О.Ф., Павленко Ю.Н., Пугач В.М. Структура инклюзивных спектров трехчастичных ядерных реакций // Изв. АН СССР. Сер. физ. - 1989. - Т. 53, № 11. - С. 2183 - 2187.
- 10. *Jarmie N., Brown R.E., Hardekopf R.A.* Fusion-energy reaction 2 H(t, α)n at E_t = 12.5 to 117 keV // Phys. Rev. C. 1984. Vol. 29, P. 2031 2046.
- Brown R.E., Jarmie N., Hale G.M. Fusion-energy reaction ³H(d, α)n at low energies // Phys. Rev. C. -1987. - Vol. 35. - P. 1999 - 2004.
- Barker F.C. 3/2+ levels of ⁵He and ⁵Li, and shadow poles // Phys. Rev. C. - 1997. - Vol. 56, No.5. - P. 2646 -2653.

- Hoesner B., Heeringa W., Klages H.O. et al. Measurements of the ³He and ⁴He total neutron cross sections up to 40 MeV // Phys. Rev. C. 1983. Vol. 28. P. 995 999.
- 14. Павленко Ю. М., Кива В. О., Коломієць І. М. та ін. Методика багатопараметричних кореляційних вимірювань для досліджень ядерних реакцій // Зб. наук. праць Ін-ту ядерних досл. – 2005. - № 2 (15). - С. 151 - 161.
- 15. Ohlsen G.G. Kinematic relations in reactions of the form A + B → C + D + E // Nucl. Instr. Meth. - 1965. - Vol. 37.
 - P. 240 - 248.
- 16. Komarov V.V., Popova A.M., Karmanov F.I. et al. Scattering proprties of two-fragment systems produced by many-particle reactions // Phys. of Elem. Part. and Atom. Nucl. - 1992. - Vol. 23, No. 4. -P. 1035 - 1087.
- Горпинич О.К., Добриков В.Н., Кива В.О. и др. Механизмы реакции ⁷Li(d, ³He)⁶He // Программа и тез. докл. 54-го Междунар. совещ. по ядерной спектроскопии и структуре атомного ядра. – Белгород, 2004. - С. 168.
- Pavlenko Yu. N., Dobrikov V. N., Doroshko N. L. et al. Search for excited states of ³He by the reaction ⁷Li(d,⁶He)³He // Ядерна фізика та енергетика. -2006. - № 1 (17). - С. 24 - 29.
- 19. Павленко Ю.Н., Кива В.А., Коломиец И.Н., Дорошко Н.Л. Моделирование условий наблюдения резонансных состояний ядер в многочастичных реакциях // Тез. докл. Междунар. конф. "Свойства возбужденных состояний атомных ядер и механизмы ядерных реакций". - Саров, 2001. - С. 59.

- 20. *Pavlenko Yu. N.* The method of branching ratio measurements for nuclear unbound states produced by three particle reactions // Problems of atomic science and technology. Ser. Nucl. Phys. Inv. 2005. Vol. 6(45). P. 11 16.
- 21. *Komarov V.V., Popova A.M., Shablov V.L.* Dynamics of the systems of few quantum particles. Moscow: Moscow University, 1996. 334 p.
- 22. Fazio G., Giardina G., Karmanov F.I., Shablov V.L. Properties of the Resonance Scattering in Two-Fragment Systems Formed in Many-Particle Nuclear Reactions // Int. Journ. Mod. Phys. – 1996. Vol. E5. – P. 175 - 190.
- 23. Nemets O.F., Pavlenko Yu.N., Shablov V.L. et al. Angular Correllations and Decay Branching Ratio for Unbound State of ⁷Li*(7.45 MeV) Excited at the Inelastic Scattering of Alpha-Particles by ⁷Li // Current Problems in Nuclear Physics and Atomic Energy: Book of Abstracts of the Int. Conf. (Kyiv, Ukraine, 29 May - 3 June 2006). - Kyiv, 2006. - P. 55.
- 24. Karmanov F.I., Pavlenko Yu.N., Tyras I.A., Shablov V.L. Narrowing of near-threshold two-body resonances produced by three particle nuclear reactions // Ibid. P. 69.
- 25. Arena N., Cavallaro Seb., Fazio G. et al. Three-body effects in the ⁷Li(d,ααn) reaction // Phys. Rev. C. -1989. Vol. 40, No.1. - P. 55 - 58.
- 26. Arena N., Cavallaro Seb., Arrigo A.D. et al. The $J^{\pi} = 3/2+$, T = 1/2 ⁵Li level by the ⁶Li(³He, α)⁵Li reaction // Journ. Phys. 1990. Vol. G16. P. 1511 1515.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ИЗОТОПОВ ГЕЛИЯ В РЕАКЦИЯХ ^{6,7}Li(d, ^{3,4,6}He) ПРИ ЭНЕРГИИ ДЕЙТРОНОВ 37 МэВ

Ю. Н. Павленко, О. К. Горпинич, В. Н. Добриков, Н. Л. Дорошко, В. А. Кива, И. Н. Коломиец, В. И. Медведев, Вал. Н. Пирнак

В кинематически полных и неполных экспериментах при энергии дейтронов 37 МэВ исследованы процессы образования в выходных каналах реакций ^{7,6}Li(d, ^{3,4,6}He) стабильных и нестабильных состояний ядер отдачи ³⁻⁶He. Определены сечения возбуждения основных и ряда возбужденных состояний этих ядер, а также исследованы возможные механизмы формирования наблюдаемых в инклюзивных спектрах ядер ^{3,4,6}He континуумов. Из анализа данных инклюзивных и эксклюзивных экспериментов определена вероятность распада в реакции ⁷Li(d, ⁴He)⁵He резонанса ⁵He*(16,75 MэB) в канал d + t, значение которой существенно отличается от данных, полученных при исследовании бинарных реакций.

EXPERIMENTAL STUDY OF THE EXCITED STATES OF HELIUM ISOTOPES IN THE REACTIONS ⁷Li(d,^{3,4,6}He) AT DEUTERON ENERGY OF 37 MeV

Yu. M. Pavlenko, O. K. Gorpynych, V. N. Dobrikov, N. L. Doroshko, V. O. Kyva, I. N. Kolomiets, V. I. Medvedev, Val. M. Pirnak

The processes of formation of stable and unstable states of ³⁻⁶He recoil nuclei in the exit channels of reactions ^{7,6}Li(d, ^{3,4,6}He) have been studied in kinematically complete and incomplete experiments at deuteron energy of 37 MeV. The excitation cross-sections of ground and the number of excited states of these nuclei have been determined. The possible mechanisms of continuum formation in inclusive spectra of ^{3,4,6}He nuclei have been also studied. The probability of decay of resonance ⁵He*(16,75 MeB) into d + t channel in reaction ⁷Li(d, ⁴He)⁵He has been determined from the analysis of inclusive and exclusive experiments. Obtained data essentially differs from that obtained at the study of binary reactions.

Надійшла до редакції 19.07.06, після доопрацювання – 05.10.06.