Nuclear Physics and Atomic Energy

Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 1, pages 48-55.
Section: Radiation Physics.
Received: 10.03.2017; Accepted: 15.06.2017; Published online: 7.08.2017.
PDF Full Text (ua)

Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

S. V. Luniov1,*, A. I. Zimych1, P. F. Nazarchuk1, S. A. Moroz1, L. N. Polishchuk1, V. T. Maslyuk2, I. G. Megela2

1 Lutsk National Technical University, Lutsk, Ukraine
2 Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine

*Corresponding author. E-mail address:

Abstract: Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

Keywords: n-Ge single crystals, uniaxial deformation, piezo-Hall-effect, radiation defects, A-centers.


1. L.S. Smirnova (ed.), Issues of Radiation Technology of Semiconductors, Novosibirsk: Nauka (1980), 296 p. (Rus)

2. V.V. Kozlovskij, V.A. Kozlov, V.N. Lomasov, FTP 34, No. 2 (2000) 129 - 147. (Rus)

3. A.K. Semenyuk, Radiation Effects in Multi-Valves Semiconductors, Luts'k: Nadstyrya (2001), 323 p. (Ukr)

4. C. Claes, E. Simoen, Germanium-Based Technologies: From Materials to Devices, Oxford: Elsevier Science (2007), 476 p. Google books

5. F. Murphy-Armando, S. Fahy, Giant enhancement of n-type carrier mobility in highly strained germanium nanostructures, J. Appl. Phys. 109 (2011) 113703.

6. B. Lemke, R. Baskaran, O. Paul, Piezoresistive CMOS sensor for out-of-plane normal stress, Sensor Actuat A-phys. 176 (2012) 10 - 18.

7. D.N. Lobanov, A.V. Novikov, K.E. Kudryavtsev et al., Effect of parameters of Ge(Si)/Si(001) self-assembled islands on their electroluminescence at room temperature, Semiconductors 43, No. 3 (2009) 313 - 317.

8. S. Tong, J. Liu, L.J. Wan et al., Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate, Appl. Phys. Lett. 80 (2002) 1189.

9. K. Brunner, Si/Ge nanostructures, Rep. Prog. Phys. 65, No. 1 (2002) 27.

10. G.P. Gaidar, On the tensoresistance of n-Ge and n-Si crystals with radiation-induced defects, Semiconductors 49, No. 9 (2015) 1129 - 1133.

11. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk et al., Specific features of electron scattering in uniaxially deformed n-Ge single crystals in the presence of radiation defects, Radiation Effects and Defects in Solids 171, No. 11-12 (2016) 855 - 868.

12. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk et al., Determination of parameters of radiation defects in single crystal n-Ge irradiated by high-energy electrons, Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17, No. 1 (2016) 47 - 52.

13. P.S. Kireev, Physics of semiconductors, Moskva: Vysshaya shkola (1969), 590 p. (Rus)

14. J. Fage-Pedersen, A.N. Larsen, A. Mesli, Irradiation-induced defects in Ge studied by transient spectroscopies, Phys. Rev. B 62, No. 15 (2000) 10116 - 10125.

15. A.N. Larsen, A. Mesli, The hidden secrets of the E-center in Si and Ge, Physica B 401-402 (2007) 85 - 90.

16. V.P. Markevich, A.R. Peaker, V.V. Litvinov et al., Electronic properties of antimony-vacancy complex in Ge crystals, J. Appl. Phys. 95, No. 8 (2004) 4078.

17. V.P. Markevich, I.D. Hawkins, A.R. Peaker et al., Vacancy-group-V-impurity atom pairs in Ge crystals doped with P, As, Sb, and Bi, Phys. Rev B 70, No. 23 (2004) 235213.

18. M.C. Petersen, A.N. Larsen, A. Mesli, Divacancy defects in germanium studied using deep-level transient spectroscopy, Phys. Rev. B 82 (2010) 075203.

19. J. Coutinho, V.J.B. Torres, R. Jones et al., Calculation of deep carrier traps in a divacancy in germanium crystals, Appl. Phys. Lett. 88, No. 9 (2006) 091919.

20. V.P. Markevich, I.D. Hawkins, A.R. Peaker et al., Electronic properties of vacancy-oxygen complex in Ge crystals, Appl. Phys. Lett. 81 (2002) 1821.

21. V.V. Litvinov, L.I. Murin, Dzh.L. Lindstrom et al., FTP 36, No. 6 (2002) 658. (Rus)

22. A.L. Polyakova, Deformation of Semiconductors and Semiconductor Devices, Moskva: Nauka (1979), 168 p. (Rus)

23. P.I. Baranskij, V.P. Klochkov, I.V. Potykevich, Semiconductor Electronics, Kyiv: Naukova Dumka (1975), 704 p. (Rus)

24. V.P. Markevich, V.V. Litvinov, L. Dobaczewski et al., Vacancy-oxygen complex in Ge crystals, Physica B 340-342 (2003) 844 - 848.

25. A.K. Semenyuk, P.F. Nazarchuk, FTP 18, No. 3 (1984) 540 - 542. (Rus)

26. A.K. Semenyuk, P.F. Nazarchuk, FTP 19, No. 7 (1985) 1331 - 1333. (Rus)