Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 1, pages 56-62.
Section: Radiobiology and Radioecology.
Received: 5.10.2016; Accepted: 15.06.2017; Published online: 7.08.2017.
PDF Full Text (ua)
https://doi.org/10.15407/jnpae2017.01.056

Regularities of uranium distribution in groundwater of ChNPP industrial site

M. I. Panasyuk*, I. A. Lytvyn

Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Chornobyl, Ukraine

*Corresponding author. E-mail address: mipanasyuk@bigmir.net.

Abstract: Observed significant increase of migration properties of uranium from groundwater happens when pH rises above 9 - 10 against significant increases in the concentrations of major ions: Na+, K+, 32-, NO2-, NO3-. Herewith, strongly alkaline reducing or transitional environment in groundwater is formed.

Keywords: industrial site of ChNPP, underground waters, fuel uranium, plutonium, pH, major ions, raised migration.

References:

1. A.S. Belitskij, E.I. Orlova, Protection of Groundwater from Radioactive Contamination, Moskva: Meditsina (1968). (Rus)

2. A.I. Korotkov, A.N. Pavlov, Hydrochemical Method in Geology and Hydrogeology, Leningrad: Nedra (1972). (Rus)

3. S.R. Krajnov, V.M. Shvets, Hydrogeochemistry, Moskva: Nedra (1972). (Rus)

4. N.I. Panasyuk (supervisor), Radiohydroecological monitoring in the area of the object Ukrytie. Step 2. Conducting of radiohydroecological monitoring for the second step of 2015, Report on research work No. 0115U005355, Chernobyl (2015). (Rus)

5. S. Levchuk, V. Kashparov, I. Maloshtan et al., Migration of transuranic elements in groundwater from the near-surface radioactive waste site, Applied Geochemistry 27, No. 7 (2012) 1339 - 1347. https://doi.org/10.1016/j.apgeochem.2012.01.002

6. A.P. Novikov, A.N. Kalmykov, V.V. Tkachev, Ros. Khim. Zhurnal LIX, No. 2 (2005) 119 - 126. (Rus) http://www.chem.msu.su/rus/jvho/2005-2/119.pdf

7. B.Yu. Kornilovich, G.N. Pshinko, I.A. Koval'chuk, Radiochemistry 43, No. 5 (2001) 528 - 531. https://doi.org/10.1023/A:1013041928344

8. N.I. Panasyuk, Problemy Bezpeky Atomnykh Elektrostantsii i Chornobylya 13 (2010) 128 - 135. (Rus) http://dspace.nbuv.gov.ua/bitstream/handle/123456789/58207/14-Panasiuk.pdf?sequence=1

9. L.I. Rudenko, V.E.-I. Khan, N.I. Panasyuk, Radiochemistry 45, No. 3 (2003) 293 - 297. https://doi.org/10.1023/A:1026076529333

10. L.I. Rudenko, V.E.-I. Khan, Radiochemistry 47, No. 1 (2005) 89 - 92. https://doi.org/10.1007/s11137-005-0054-1

11. Migration of alpha-radionuclides from the object "Ukryttya" to the groundwater and the mechanism for their realization, Annotated report on research work, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv (2010). (Ukr)

12. L.I. Rudenko (supervisor), Investigation of the composition of alpha emitting radionuclides in the groundwaters of the industrial site of the Chernobyl NPP: Stage 2012. Investigation of the phase distribution of cesium, strontium, uranium and transuranium elements concentration, Interim report on research work No. 0111U002825; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv (2012). (Ukr)

13. R.M. Garrels, C.L. Christ, Solutions, Minerals, and Equilibria, San Francisco: Freeman, Cooper & Co. (1965), 450 p. Google books

14. M.J.N. Pourbaix, Thermodynamics of Dilute Aqueous Solutions, London: Edwar Arnold and Co. (1949), 136 p. Google books

15. Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments. Naoto TAKENO. May 2005.