Nuclear Physics and Atomic Energy

Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 4, pages 303-312.
Section: Nuclear Physics.
Received: 27.09.2017; Accepted: 28.12.2017; Published online: 20.02.2018.
PDF Full text (en)

Joint analysis of Borexino and SNO solar neutrino data and reconstruction of the survival probability

Francesco Vissani1,2*

1 INFN - Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
2 Gran Sasso Science Institute, LAquila (AQ), Italy

*Corresponding author. E-mail address:

Abstract: Solar neutrino oscillations are supported by KamLANDs antineutrino measurements, but certain solar neutrino data the observed shape of the 8B flux and the difference between day and night counting rates measured in Super-K do not fit well with the ensuing oscillation pattern. Interestingly, other solar neutrino data allow independent tests of the survival probability. Thanks to the new measurements of Borexino at low-energies along with the standard solar model and to the results of SNO at high-energies, four values of the neutrino survival probability are known. We build and study a likelihood based only on these solar neutrino data. The results agree well with the standard oscillation pattern and in particular with KamLAND findings. A related and straightforward procedure permits to reconstruct the survival probability of solar neutrinos and to assess its uncertainties, for all solar neutrino energies.

Keywords: solar neutrinos, neutrino oscillations, nuclear astrophysics, pp neutrinos, pep neutrinos, 7Be neutrinos, 8B neutrinos.


1. Borexino Collaboration (M. Agostini et al.). First simultaneous precision spectroscopy of pp, 7Be and pep solar neutrinos with Borexino phase-II. arXiv: 1707.09279 [hep-ex], submitted for publication.

2. L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D 17 (1978) 2369.;
S.P. Mikheyev, A.Yu. Smirnov. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42 (1986) 913.

3. SNO Collaboration (A. Bellerive et al.). The Sudbury Neutrino Observatory. Nucl. Phys. B 908 (2016) 30.

4. KamLAND Collaboration (A. Gando et al.). Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88 (2013) 033001.

5. Super-Kamiokande Collaboration (K. Abe et al.). Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 94 (2016) 052010.

6. F. Capozzi et al. Global constraints on absolute neutrino masses and their ordering. Phys. Rev. D 95 (2017) 096014.

7. I. Esteban et al. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. JHEP 01 (2017) 087.

8. P.F. de Salas et al. Status of neutrino oscillations 2017. arXiv:1708.01186 [hep-ph], submitted for publication.

9. P.C. de Holanda, A.Y. Smirnov. Solar neutrino spectrum, sterile neutrinos, and additional radiation in the Universe. Phys. Rev. D 83 (2011) 113011.

10. A. Palazzo. Hint of nonstandard Mikheyev-Smirnov-Wolfenstein dynamics in solar neutrino conversion. Phys. Rev. D 83 (2011) 101701.

11. F. Vissani. Solar neutrino physics on the beginning of 2017. Nucl. Phys. At. Energy 18(1) (2017) 5.

12. J.N. Bahcall, A.M. Serenelli, S. Basu. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. 621 (2005) L85.

13. N. Vinyoles et al. A New Generation of Standard Solar Models. Astrophys. J. 835 (2017) 202.

14. D.G. Yakovlev et al. Simple analytic model for astrophysical S factors. Phys. Rev. C 82 (2010) 044609.

15. E.G. Adelberger et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83 (2011) 195.

16. R.J. de Boer et al. Monte Carlo uncertainty of the 3He(α, γ)7Be reaction rate. Phys. Rev. C 90 (2014) 035804.

17. A. Di Leva, talk at [18].

18. Int. Conf. Recent Developments in Neutrino Physics and Astrophysics, 4 - 7 Sept. 2017, Assergi, Italy.

19. B.T. Cleveland et al. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. Astrophys. J. 496 (1998) 505.

20. SAGE Collaboration (J.N. Abdurashitov et al.). Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002 - 2007 data-taking period. Phys. Rev C 80 (2009) 015807.

21. F. Kaether et al. Reanalysis of the Gallex solar neutrino flux and source experiments. Phys. Lett. B 685 (2010) 47.

22. Borexino Collaboration (G. Bellini et al.). Absence of a day-night asymmetry in the 7Be solar neutrino rate in Borexino. Phys. Lett. B 707 (2012) 22.

23. Borexino Collaboration (M. Agostini et al.). Improved measurement of 8B solar neutrinos with 1.5 kt y of Borexino exposure. arXiv:1709.00756 [hep-ex], submitted for publication.

24. J.N. Bahcall et al. Standard neutrino spectrum from 8B decay. Phys. Rev. C 54 (1996) 411.

25. W.T. Winter et al. The 8B neutrino spectrum. Phys. Rev. C 73 (2006) 025503.

26. F. Vissani. We saw the engine of the Sun!