Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 4, pages 313-318.
Section: Nuclear Physics.
Received: 19.10.2017; Accepted: 28.12.2017; Published online: 20.02.2018.
PDF Full text (en)
https://doi.org/10.15407/jnpae2017.04.313

Determination of the 108-112Pd isotopes identity using interacting boson model

Mariam O. Waheed, Fadhil I. Sharrad*

Department of Physics, College of Science, University of Kerbala, Karbala, Iraq

*Corresponding author. E-mail address: fadhil.altaie@gmail.com

Abstract: Energy levels, B(E2) transition probabilities and potential energy surface for palladium isotopes with proton number Z = 46 and neutron numbers (n) between 62 and 66 have been calculated through the interacting boson model. The set of parameters used in these calculations are the best approximation that has been carried out so far. The ratio of the excitation energies of the first 4+1 and the first 2+1 excited states, R = E4+1/E2+1, is also calculated and an achievable degree of agreement has been investigated in O(6) symmetry for 108-112Pd nuclei. The comparison between the calculated energy levels and the transition probabilities B(E2) with those of the experimental show that it is a good agreement. The contour plot of the potential energy surfaces shows all nuclei of interests are deformed and have γ-unstable-like characters.

Keywords: interacting boson model, Pd isotopes, energy levels, ground band, B(E2).

References:

1. F. Iachello, A. Arima. The Interacting Boson Model (Cambridge: Cambridge University Press, 1987). Google books

2. A. Bohr, B.R. Mottelson. Nuclear Structure: II. Nuclear Deformations (New York: Benjamin, 1975). Google books

3. Huda H. Kassim, Fadhil I. Sharrad. Energy levels and electromagnetic transition of 190–196Pt nuclei. Int. J. Mod. Phys. E 23 (2014) 1450070. https://doi.org/10.1142/S0218301314500700

4. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin: Springer, 1980). http://www.springer.com/la/book/9783540212065

5. T. Otsuka, A. Arima, F. Iachello. Nuclear shell model and interacting bosons. Nucl. Phys. A 309 (1978) 1. https://doi.org/10.1016/0375-9474(78)90532-8

6. F. Iachello, A. Arima. Boson symmetries in vibrational nuclei. Phys. Lett. B 53 (1974) 309. https://doi.org/10.1016/0370-2693(74)90389-X

7. A. Arima, F. Iachello. Collective Nuclear States as Representations of a SU(6) Group. Phys. Rev. Lett. 35 (1975) 1069. https://doi.org/10.1103/PhysRevLett.35.1069

8. I. Inc³, N. Turkan. IBM-2 Calculations of Selected Even-Even Palladium Nuclei. Turk. J. Phys. 30 (2006) 503. http://journals.tubitak.gov.tr/physics/issues/fiz-06-30-6/fiz-30-6-4-0603-2.pdf

9. A. Dewald et al. Collectivity of neutron-rich palladium isotopes and the valence proton symmetry. Phys. Rev. C 78 (2008) 051302. https://doi.org/10.1103/PhysRevC.78.051302

10. A. Shelley et al. Yrast states and electromagnetic reduced transition properties of 122Òå by means of interacting boson model-1. Problems of Atomic Science and Technology 3 (2015) 38. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_3/article_2015_3_38.pdf

11. H.H. Khudher, A.K. Hasan, F.I. Sharrad. Transition Probabilities, and Potential Energy Surfaces for 120-126Xe Even-Even Isotopes. Ukr. J. Phys. 62 (2017) 152. https://doi.org/10.15407/ujpe62.02.0152

12. M. Boyukata et al. Extended interacting boson model description of Pd nuclei in the A ∼ 100 transitional region. EPJ Web of Conferences 66 (2014) 02013. https://doi.org/10.1051/epjconf/20146602013

13. M. Boyukata, P. Van Isacker, I. Uluer. Description of nuclei in the A ∼ 100 mass region with the interacting boson model. J. Phys. G 37 (2010) 105102. https://doi.org/10.1088/0954-3899/37/10/105102

14. I. Bentley, S. Frauendorf. Microscopic calculation of interacting boson model parameters by potential-energy surface mapping. Phys. Rev. C 83 (2011) 064322. https://doi.org/10.1103/PhysRevC.83.064322

15. DaLi Zhang, ChengFu Mu. Description of mixed symmetry states in 96Ru using IBM-2. Sci. China Phys., Mech. & Astron. 60 (2017) 042011. https://link.springer.com/article/10.1007/s11433-016-9003-4

16. I. Hossain et al. B(E2) value of even-even 108–112Pd isotopes by interacting boson model-1. Chinese Physics C 38 (2014) 024103. http://iopscience.iop.org/article/10.1088/1674-1137/38/2/024103

17. I. Hossain, H.Y. Abdullah, I.M. Ahmed. Nuclear structure of 110Pd and 110Cd isobar by interacting boson model (IBM-1). Probl. Atom. Sci. Tech. 3 (2015) 13. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_3/article_2015_3_13.pdf

18. K. Abrahams, K. Allaart, A.E.L. Dieperink (ed.). Nuclear Structure (New York and London: Plenum press, 1981). https://doi.org/10.1007/978-1-4684-3950-2

19. R.F. Casten, D.D. Warner. The interacting boson approximation. Rev. Mod. Phys. 60 (1988) 389. https://doi.org/10.1103/RevModPhys.60.389

20. A. Okhunov et al. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb. Chinese Physics C 39 (2015) 084101. https://doi.org/10.1088/1674-1137/39/8/084101

21. F. Iachello. Dynamical Supersymmetries in Nuclei. Phys. Rev. Lett. 44 (1980) 772. https://doi.org/10.1103/PhysRevLett.44.772

22. F.I. Sharrad et al. Low-lying states of 184W and 184Os nuclei. Chinese Physics C 37 (2013) 034101. https://doi.org/10.1088/1674-1137/37/3/034101

23. A. Arima, F. Iachello. Interacting Boson Model of Collective States I. The Vibrational Limit. Ann. Phys. 281 (2000) 2. https://doi.org/10.1006/aphy.2000.6007

24. R.F. Casten. Simplicity and complexity in nuclear structure. Romanian Reports in Phys. 57 (2005) 515. http://rrp.infim.ro/2005_57_4/02-515-526.pdf

25. E.A. McCutchan, R.F. Casten. Crossing contours in the interacting boson approximation (IBA) symmetry triangle. Phys. Rev. C 74 (2006) 057302. https://doi.org/10.1103/PhysRevC.74.057302

26. O. Scholten. Computer code PHINT, KVI (The Netherlands, Groningen, 1980).

27. http://www.nndc.bnl.gov/chart

28. J. Blachot. Nuclear Data Sheets for A = 108. Nucl. Data Sheets 81 (1997) 599. https://doi.org/10.1006/ndsh.1997.0016

29. G. Gurdal, F.G. Kondev. Nuclear Data Sheets for A = 110. Nucl. Data Sheets 113 (2012) 1315. https://doi.org/10.1016/j.nds.2012.05.002

30. D. de Frenne, E. Jacobs. Nuclear Data Sheets for A = 112. Nucl. Data Sheets 79 (1996) 639. https://doi.org/10.1006/ndsh.1996.0015

31. H.R. Yazar, U. Erdem. Nature of Excited States of Gadolinium Isotopes. Chinese J. Phys. 46 (2008) 270. http://psroc.org/cjp/issues.php?vol=46&num=3

32. W.D. Hamilton (ed.). The Electromagnetic Interaction in Nuclear Spectroscopy (New York: American Elsevier Publishing Company, 1975). Google books