10. NUCLEAR g-FACTORS AND STRUCTURE OF THE HIGH-SPIN 10⁺, 12⁺ AND 7⁻ STATES IN ISOTOPS ^{196,198}Hg

Yu. V. Nosenko, A. I. Levon, I. B. Kovgar, V. A. Onischuk, A. A. Schevchuk

The integral perturbed angular distribution (IPAD) method in an external magnetic field has been used to measure the g-factors of isomers in the ^{196,198}Hg nuclei, populated in the (α , 2n)-reaction. The results are as follows: ¹⁹⁶Hg, g(12⁺ and 10⁺) = -0.19(6), g(7⁻) = -0.030(17); ¹⁹⁸Hg, g(12⁺ and 10⁺) = -0.18(8), g(7⁻) = -0.033(14). The intrinsic structure of the isomers is discussed. Measured g-factors of 12⁺ and 10⁺ states support model "axial-symmetric oblate rotor + two-quasiparticles". Measured g-factors of 7⁻ states in mercury allows to confirm prediction of model "axial-symmetric rotor plus two-quasiparticles" for Hg nuclei and transient form in the platinum nuclei.