14. ULTRASOUND INFLUENCE ON THE ELECTRICAL ACTIVITY OF RADIATION DEFECTS IN γ -IRRADIATED *n*-TYPE SILICON CRYSTALS

V. M. Babych, A. P. Dolgolenko, Ja. M. Olikh, M. D. Tymochko

The effect of the ultrasonic (US) processing in regime ($f_{\rm US} = 8 \text{ M}\Gamma\mu$, $W_{\rm US} = 2 \text{ Br/cm}^2$, $t \approx 10^4 \text{ c}$) on the transformation of radiation defects (RDs) in γ -irradiated ($D = 10^8$ and 10^9 rad) in Chochralski-grown *n*-type silicon single crystals ($9.5 \cdot 10^{17} \text{ cm}^{-3}$) has been studied. The changes of the temperature dependence (100-300 K) of concentration n(T) and mobility $\mu(T)$ of charge carriers after γ -irradiated (irreversible changes) and US processing (reverse) has been exposed. Energy positions of the defect levels E_a^i and their concentrations N_a^i from the theoretical computations were determined. Possibility of acoustostimulated transformation of definite RDs (divacancies V_2^- , $E_a^{-1} = (E_c - 0.424 \text{ eB})$, modified *A*center (V- O), $E_a^2 = (E_c - 0.205 \text{ eB})$ and complex that can contain nitrogen (? + N), $E_a^{-3} = (E_c - 0.19 \text{ eB})$) by means of change of configuration, structure and recharge for example two-dimensional energy configuration-coordinate model is considered.