Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2018, volume 19, issue 1, pages 43-47.
Section: Radiation Physics.
Received: 08.12.2017; Accepted: 22.03.2018; Published online: 12.05.2018.
PDF Full text (en)

Structure, morphology, thermal and conductivity properties of gel electrolyte system based on polyvinyl chloride and LiClO4

V. V. Klepko1, V. I. Slisenko2, K. M. Sukhyy3,*, S. D. Nesin1, V. L. Kovalenko3,4, Y. O. Serhiienko3, I. V. Sukha3

1 Institute for Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Ukrainian State University of Chemical Technology, Dnipro, Ukraine
4 Federal State Educational Institution of Higher Education "Vyatka State University", Kirov, Russia

*Corresponding author. E-mail address:;

Abstract: The dynamics of atoms and molecules in gel electrolyte based on polyvinyl chloride and a solution of LiClO4 in propylene carbonate was studied by the method of quasielastic scattering of slow neutrons. The coefficients of self-diffusion of atoms and molecules are determined and a possible variant of the mechanism of charge transport in this system is proposed.

Keywords: solid polymer electrolytes, polyvinyl chloride, X-ray scattering, calorimetric scattering, quasi-elastic neutron scattering.


1. F.M. Gray, J.A. Connor (ed.). Polymer Electrolytes (Cambridge, UK: Royal Society of Chemistry, 1997). 175 p.

2. M. Alamgir, K.M. Abraham (ed.). Lithium Batteries: New Materials, Developments, and Perspectives (Elsevier, Amsterdam-London-New York-Tokyo, 1994, Ch. 3, 93).

3. M. Alamgir, K.M. Abraham. Li Ion Conductive Electrolytes Based on Poly(vinyl chloride). J. Electrochem. Soc. 140 (1993) L96-L97.

4. G. Pistoia, A. Antonioni, G. Wang. Impedance Study on the Reactivity of Gel Polymer Electrolytes towards a Lithium Electrode. J. Power Sources 58 (1996) 139.

5. A.M. Sukeshini, A. Nishimoto, M. Watanabe. Transport and Electrochemical Characterization of Plasticized Poly(vinyl chloride) Solid Electrolytes. Solid State Ionics 86-88 (1996) 385.

6. P.H. Mutin, I.M. Guenet. Physical gels from PVC: Aging and Solvent Effects on Thermal Behavior, Swelling, and Compression Modulus. Macromolecules 22 (1989) 843.

7. S. Ohta, T. Kajiama, M. Takayanagi. Annealing Effect on the Microstructure of Poly(vinyl chloride. Polymer Engineering and Science 16(7) (1976) 465.

8. A. Nakajima, H. Hamada, M. Shayashi. Structure and Some Physical Properties of Polyvinyl Chloride Polymerized at Different Temperatures. Macromol. Chem. Phys. 95 (1966) 40.

9. C.G. Vonk. Program for the Processing of Small Angle X-Ray Scattering Data, FFSAXSJ (Geelen, Netherlands, 1977).

10. A.K. Tripathi, R.K. Singh. Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. Journal of Energy Storage 15 (2018) 283.

11. M. Safa, A. Chamaani, N. Chawla, B. El-Zahab. Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications. Electrochem. Acta 213 (2016) 587.

12. M.V. Burmistr et al. Structure, thermal and ion-conductivity properties of the polymeric quaternary ammonium salts (polyionenes) containing ethylene oxide and aliphatic fragments in the chain. Solid State Ionics 176 (2005) 1787.

13. D. Devaux et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics 310 (2016) 71.

14. Y. Melnichenko, L. Bulavin. Self-diffusion of Water in Gelatin Gels: 2. Quasi-clastic Neutron Scattering Data. Polymer 32 (1991) 3295.