Nuclear Physics and Atomic Energy

Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2018, volume 19, issue 2, pages 95-102.
Section: Nuclear Physics.
Received: 05.06.2018; Accepted: 18.06.2018; Published online: 02.08.2018.
PDF Full text (en)

Double beta decay of 150Nd to the first excited 0+ level of 150Sm: Preliminary results

A. S. Barabash1, P. Belli2,3, R. Bernabei2,3, R. S. Boiko4,5, F. Cappella6, V. Caracciolo7, R. Cerulli2,3, F. A. Danevich4, A. Di Marco2,3, A. Incicchitti6,8, D. V. Kasperovych4,*, R. V. Kobychev4, V. V. Kobychev4, S. I. Konovalov1, M. Laubenstein7, D. V. Poda4,9, O. G. Polischuk4, V. I. Tretyak4, V. I. Umatov1

1 National Research Centre Kurchatov Institute, Institute of Theoretical and Experimental Physics, Moscow, Russia
2 INFN, sezione di Roma Tor Vergata, Rome, Italy
3 Dipartimento di Fisica, Universita di Roma Tor Vergata, Rome, Italy
4 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
5 National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
6 INFN, sezione di Roma, Rome, Italy
7 INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
8 Dipartimento di Fisica, Universita di Roma La Sapienza, Rome, Italy
9 CSNSM, Universite Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France

*Corresponding author. E-mail address:

Abstract: The double beta decay of 150Nd to the first excited 0+ level of 150Sm (Eexc = 740.5 keV) was investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (≃225 cm3 volume each one) at the Gran Sasso underground laboratory of INFN (Italy). A highly purified 2.381-kg sample of neodymium oxide (Nd2O3) was used as a source of γ quanta expected in the decays. Gamma quanta with energies 334.0 keV and 406.5 keV emitted after deexcitation of the 01+ 740.5 keV excited level of 150Sm are observed in the coincidence spectra accumulated over 16375 h. The half-life relatively to the two neutrino double beta decay 150Nd → 150Sm(01+) is measured as T1/2 = [4.7+4.1-1.9(stat)±0.5(syst)]×1019 y, in agreement with results of previous experiments.

Keywords: double beta decay, 150Nd, low counting experiment.


1. V.I. Tretyak, Yu.G. Zdesenko, Tables of double beta decay data - an update. At. Data Nucl. Data Tables 80 (2002) 83.

2. R. Saakyan, Two-Neutrino Double-Beta Decay. Annu. Rev. Nucl. Part. Sci. 63 (2013) 503.

3. A.S. Barabash. Average and recommended half-life values for two-neutrino double beta decay. Nucl. Phys. A 935 (2015) 52.

4. J. Barea, J. Kotila, F. Iachello. Limits on Neutrino Masses from Neutrinoless Double-β Decay. Phys. Rev. Lett. 109 (2012) 042501.

5. W. Rodejohann, Neutrinoless double-beta decay and neutrino physics. J. Phys. G 39 (2012) 124008.

6. F.F. Deppisch, M. Hirsch, H. Päs. Neutrinoless double-beta decay and physics beyond the standard model. J. Phys. G 39 (2012) 124007.

7. S.M. Bilenky, C. Giunti. Neutrinoless double-beta decay: A probe of physics beyond the Standard Model. Int. J. Mod. Phys. A 30 (2015) 1530001.

8. S. Dell'Oro et al. Neutrinoless Double Beta Decay: 2015 Review. AHEP 2016 (2016) 2162659.

9. J.D. Vergados, H. Ejiri, F. Šimkovic. Neutrinoless double beta decay and neutrino mass. Int. J. Mod. Phys. E 25 (2016) 1630007.

10. J. Schechter, J.W.F. Valle. Neutrinoless double-β decay in SU(2)⨯U(1) theories. Phys. Rev. D 25 (1982) 2951.

11. F. Vissani. Solar neutrino physics on the beginning of 2017. Nucl. Phys. At. Energy 18 (2017) 5.

12. V.S. Kolhinen et al. Double-β decay Q value of 150Nd. Phys. Rev. C 82 (2010) 022501.

13. J. Meija et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 293.

14. V. Artemiev et al. Half-life measurement of 150Nd 2β2ν decay in the time projection chamber experiment. Phys. Lett. B 345 (1995) 564.

15. A. De Silva et al. Double β decays of 100Mo and 150Nd. Phys. Rev. C 56 (1997) 2451.

16. R. Arnold et al. Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 94 (2016) 072003.

17. S.K. Basu, A.A. Sonzogni. Nuclear data sheets for A = 150. Nucl. Data Sheets 114 (2013) 435.

18. A.S. Barabash et al. Double-beta decay of 150Nd to the first 0+ excited state of 150Sm. JETP Lett. 79 (2004) 10.

19. A.S. Barabash et al. Investigation of ββ decay in 150Nd and 148Nd to the excited states of daughter nuclei. Phys. Rev. C 79 (2009) 045501.

20. S. Blondel. Optimisation du blindage contre les neutrons pour le demonstrateur de SuperNEMO et analyse de la double desintegration beta du neodyme-150 vers les etats excites du samarium-150 avec le detecteur NEMO-3. PhD thesis, LAL, Orsay, France, LAL 13-154 (2013).

21. M.F. Kidd et al. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm. Phys. Rev. C 90 (2014) 055501.

22. O.G. Polischuk et al. Purification of lanthanides for double beta decay experiments. AIP Conf. Proc. 1549 (2013) 124.

23. R.S. Boiko. Chemical purification of lanthanides for low-background experiments. Int. J. Mod. Phys. A 32 (2017) 1743005.

24. N.A. Danilov et al. Exhaustive removal of thorium and uranium traces from neodymium by liquid extraction. Radiochem. 53 (2011) 269.

25. M. Laubenstein et al. Underground measurements of radioactivity. Appl. Radiat. Isotopes 61 (2004) 167.

26. V.I. Tretyak. TS2 interactive system for one-dimensional spectra processing. Preprint KINR-90-35 (Kyiv, 1990).

27. R.B. Firestone et al. Table of Isotopes. 8th ed. (New York, 1996) and CD update (1998).

28. P. Belli et al. New observation of 2β2ν decay of 100Mo to the 01+ level of 100Ru in the ARMONIA experiment. Nucl. Phys. A 846 (2010) 143.

29. I. Kawrakow, D.W.O. Rogers. The EGSnrc code system: Monte Carlo simulation of electron and photon transport, NRCC Report PIRS-701, Ottawa, 2003.

30. G. Feldman, R. Cousins. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57 (1998) 3873.