Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2018, volume 19, issue 3, pages 227-236.
Section: Nuclear Physics.
Received: 18.06.2018; Accepted: 11.10.2018; Published online: 04.12.2018.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2018.03.227

On the estimation of the strange quark mass from the experimental data on the light baryon octet

V. A. Babenko*, N. M. Petrov

N. N. Bogolyubov Institute of Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: pet2@ukr.net

Abstract: Simple relations connecting the strange quark mass to the splittings of the light hyperon masses were obtained on the basis of the phenomenological quark model compatible with the present-day theory of strong interactions, i.e. with quantum chromodynamics (QCD). Strange quark mass ms = 89.5 ±19.5 MeV, calculated in the proposed approach, is in good agreement with the modern evaluations and calculations of this quantity, mainly obtained by the lattice QCD methods.

Keywords: quark, strange quark, quark masses, baryon, hyperon, strange particle.

References:

1. M. Gell-Mann. A schematic model of baryons and mesons. Phys. Lett. 8 (1964) 214. https://doi.org/10.1016/S0031-9163(64)92001-3

2. G. Zweig. An SU3 model for strong interaction symmetry and its breaking. CERN Report 8182/TH.401 (CERN-Geneva, 1964) 20 p. http://cds.cern.ch/record/352337/files/CERN-TH-401.pdf?version=1

3. J.J.J. Kokkedee. The Quark Model (New York: W. A. Benjamin, 1969) 239 p. Google book

4. F.J. Yndurain. The Theory of Quark and Gluon Interactions (Berlin: Springer-Verlag, 2006) 476 p. Google book

5. L.B. Okun. Elementary Particle Physics (Moskva: Nauka, 1988) 272 p. (Rus) Google book

6. V.V. Anisovich et al. Quark Model and High Energy Collisions (London: World Scientific, 2004) 530 p. Google book

7. E.M. Henley, A. Garcia. Subatomic Physics (London: World Scientific, 2007) 620 p. https://doi.org/10.1142/6263

8. M. Tanabashi et al. (Particle Data Group). Review of particle physics. Phys. Rev. D 98 (2018) 030001. https://doi.org/10.1103/PhysRevD.98.030001

9. B.L. Ioffe. Chiral effective theory of strong interactions. Phys. Usp. 44 (2001) 1211. https://doi.org/10.1070/PU2001v044n12ABEH000972

10. E.M. Henley, L.K. Morrison. n-n and n-p scattering lengths and charge independence. Phys. Rev. 141 (1966) 1489. https://doi.org/10.1103/PhysRev.141.1489

11. T.E.O. Ericson, G.A. Miller. Charge dependence of nuclear forces. Phys. Lett. B 132 (1983) 32. https://doi.org/10.1016/0370-2693(83)90216-2

12. R. Machleidt, M.K. Banerjee. Charge dependence of the πNN coupling constant and charge dependence of the nucleon-nucleon interaction. Few-Body Syst. 28 (2000) 139. https://doi.org/10.1007/s006010070019

13. V.A. Babenko, N.M. Petrov. Correlation between the properties of the deuteron and the low-energy triplet parameters of neutron-proton scattering. Physics of Atomic Nuclei 66 (2003) 1319. https://doi.org/10.1134/1.1592586

14. V.A. Babenko, N.M. Petrov. Low-energy parameters of neutron-neutron interaction in the effective-range approximation. Physics of Atomic Nuclei 76 (2013) 684. https://doi.org/10.1134/S1063778813060033

15. V.A. Babenko, N.M. Petrov. Study of the charge dependence of the pion-nucleon coupling constant on the basis of data on low-energy nucleon-nucleon interactions. Physics of Atomic Nuclei 79 (2016) 67. https://doi.org/10.1134/S1063778815090033

16. A.R. Bodmer. Collapsed nuclei. Phys. Rev. D 4 (1971) 1601. https://doi.org/10.1103/PhysRevD.4.1601

17. E. Witten. Cosmic separation of phases. Phys. Rev. D 30 (1984) 272. https://doi.org/10.1103/PhysRevD.30.272

18. J. Madsen. Physics and astrophysics of strange quark matter. Lect. Not. Phys. 516 (1999) 162. https://doi.org/10.1007/BFb0107314

19. F. Weber. Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 54 (2005) 193. https://doi.org/10.1016/j.ppnp.2004.07.001

20. T. Klaehn, D.B. Blaschke. Strange matter in compact stars. EPJ Web of Conferences 171 (2018) 08001. https://doi.org/10.1051/epjconf/201817108001

21. S. Narison. Strange quark mass from e+e- revisited. Phys. Rev. D 74 (2006) 034013. https://doi.org/10.1103/PhysRevD.74.034013

22. C. Gattringer, C.B. Lang. Quantum Chromodynamics on the Lattice (Berlin: Springer, 2010) 343 p. https://doi.org/10.1007/978-3-642-01850-3

23. A. Bazavov et al. Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks. Rev. Mod. Phys. 82 (2010) 1349. https://doi.org/10.1103/RevModPhys.82.1349

24. V.G. Bornyakov et al. Color confinement and hadron structure in lattice chromodynamics. Phys. Usp. 47 (2004) 17. https://doi.org/10.1070/PU2004v047n01ABEH001605

25. S. Dürr et al. Ab initio determination of light hadron masses. Science 322 (2008) 1224. https://doi.org/10.1126/science.1163233

26. V.G. Bornyakov, M.I. Polikarpov. Computing methods in lattice quantum chromodynamics. Teoreticheskaya Fizika 11 (2010) 64. (Rus) http://theorphys.samsu.ru/pdf/11/%5b7%5d%20Bornyakov.pdf

27. S. Dürr et al. Lattice QCD at the physical point: light quark masses. Phys. Lett. B 701 (2011) 265. https://doi.org/10.1016/j.physletb.2011.05.053

28. B.J. Gough et al. The light quark masses from lattice gauge theory. Phys. Rev. Lett. 79 (1997) 1622. https://doi.org/10.1103/PhysRevLett.79.1622

29. M. Kremer et al. Model independent determination of QCD quark masses. Phys. Lett. B 143 (1984) 476. https://doi.org/10.1016/0370-2693(84)91505-3

30. S. Okubo. Asymptotic SU(6)W spectral sum rules II. Phys. Rev. 188 (1969) 2300. https://doi.org/10.1103/PhysRev.188.2300

31. H. Leutwyler. Mesons in terms of quarks on a null plane. Nucl. Phys. B 76 (1974) 413. https://doi.org/10.1016/0550-3213(74)90534-3

32. J. Gasser, H. Leutwyler. Implications of scaling for the proton-neutron mass difference. Nucl. Phys. B 94 (1975) 269. https://doi.org/10.1016/0550-3213(75)90493-9

33. S. Weinberg. The problem of mass. Trans. N. Y. Acad. Sci. 38 (1977) 185. https://doi.org/10.1111/j.2164-0947.1977.tb02958.x

34. A.I. Vajnshtejn et al. Sum rules for light quarks in QCD. Yadernaya Fizika 27 (1978) 514. (Rus)

35. J. Gasser, H. Leutwyler. Quark masses. Phys. Rep. 87 (1982) 77. https://doi.org/10.1016/0370-1573(82)90035-7

36. D.J. Gross et al. Light-quark masses and isospin violation. Phys. Rev. D 19 (1979) 2188. https://doi.org/10.1103/PhysRevD.19.2188

37. M.A. Shifman et al. QCD and resonance physics: theoretical foundations. Nucl. Phys. B 147 (1979) 385. https://doi.org/10.1016/0550-3213(79)90022-1

38. M.A. Shifman et al. QCD and resonance physics: the ρ-ω mixing. Nucl. Phys. B 147 (1979) 519. https://doi.org/10.1016/0550-3213(79)90024-5

39. B.L. Ioffe. QCD (quantum chromodynamics) at low energies. Prog. Part. Nucl. Phys. 56 (2006) 232. https://doi.org/10.1016/j.ppnp.2005.05.001

40. G.-S. Yang et al. Electromagnetic mass differences of SU(3) baryons within a chiral soliton model. Phys. Lett. B 695 (2011) 214. https://doi.org/10.1016/j.physletb.2010.11.018

41. V.A. Babenko, N.M. Petrov. Evaluation of the two lightest quark masses. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18 (2017) 222. (Rus) https://doi.org/10.15407/jnpae2017.03.222

42. D.C. Cline et al. The search for new families of elementary particles. Sci. Am. 234 (1976) 44. https://doi.org/10.1038/scientificamerican0176-44

43. C. Amsler et al. (Particle Data Group). Review of particle physics. Phys. Lett. B 667 (2008) 1. https://doi.org/10.1016/j.physletb.2008.07.018

44. T. Ishikawa et al. Light-quark masses from unquenched lattice QCD. Phys. Rev. D 78 (2008) 011502. https://doi.org/10.1103/PhysRevD.78.011502

45. E. Gamiz et al. Vus and ms from hadronic τ decays. Phys. Rev. Lett. 94 (2005) 011803. https://doi.org/10.1103/PhysRevLett.94.011803

46. S. Aoki et al. Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks. Phys. Rev. D 68 (2003) 054502. https://doi.org/10.1103/PhysRevD.68.054502

47. Q. Mason et al. High-precision determination of the light-quark masses from realistic lattice QCD. Phys. Rev. D 73 (2006) 114501. https://doi.org/10.1103/PhysRevD.73.114501

48. T.-W. Chiu, T.-H. Hsieh. Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry. Nucl. Phys. B 673 (2003) 217. https://doi.org/10.1016/j.nuclphysb.2003.09.035

49. M. Jamin et al. Scalar Kπ form factor and light-quark masses. Phys. Rev. D 74 (2006) 074009. https://doi.org/10.1103/PhysRevD.74.074009

50. C. McNeile et al. High-precision c and b masses, and QCD coupling from current-current correlators in lattice and continuum QCD. Phys. Rev. D 82 (2010) 034512. https://doi.org/10.1103/PhysRevD.82.034512

51. C.T.H. Davies et al. Precise charm to strange mass ratio and light quark masses from full lattice QCD. Phys. Rev. Lett. 104 (2010) 132003. https://doi.org/10.1103/PhysRevLett.104.132003

52. S. Narison. Strange quark, tachyonic gluon masses and |Vus| from hadronic tau decays. Phys. Lett. B 626 (2005) 101. https://doi.org/10.1016/j.physletb.2005.08.085

53. B. Chakraborty et al. High-precision quark masses and QCD coupling from nf = 4 lattice QCD. Phys. Rev. D 91 (2015) 054508. https://doi.org/10.1103/PhysRevD.91.054508

54. S. Bodenstein et al. Strange quark mass from sum rules with improved perturbative QCD convergence. J. High Energy Phys. 07 (2013) 138. https://doi.org/10.1007/JHEP07(2013)138

55. B. Blossier et al. Average up/down, strange, and charm quark masses with Nf = 2 twisted mass lattice QCD. Phys. Rev. D 82 (2010) 114513. https://doi.org/10.1103/PhysRevD.82.114513

56. T. Blum et al. Electromagnetic mass splittings of the low lying hadrons and quark masses from 2 + 1 flavor lattice QCD+QED. Phys. Rev. D 82 (2010) 094508. https://doi.org/10.1103/PhysRevD.82.094508

57. L.B. Okun'. Current status of elementary particle physics. Phys. Usp. 41 (1998) 553. https://doi.org/10.1070/PU1998v041n06ABEH000403