Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2018, volume 19, issue 3, pages 227-236.
Section: Nuclear Physics.
Received: 18.06.2018; Accepted: 11.10.2018; Published online: 04.12.2018.
PDF Full text (ru)

On the estimation of the strange quark mass from the experimental data on the light baryon octet

V. A. Babenko*, N. M. Petrov

N. N. Bogolyubov Institute of Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address:

Abstract: Simple relations connecting the strange quark mass to the splittings of the light hyperon masses were obtained on the basis of the phenomenological quark model compatible with the present-day theory of strong interactions, i.e. with quantum chromodynamics (QCD). Strange quark mass ms = 89.5 ±19.5 MeV, calculated in the proposed approach, is in good agreement with the modern evaluations and calculations of this quantity, mainly obtained by the lattice QCD methods.

Keywords: quark, strange quark, quark masses, baryon, hyperon, strange particle.


1. M. Gell-Mann. A schematic model of baryons and mesons. Phys. Lett. 8 (1964) 214.

2. G. Zweig. An SU3 model for strong interaction symmetry and its breaking. CERN Report 8182/TH.401 (CERN-Geneva, 1964) 20 p.

3. J.J.J. Kokkedee. The Quark Model (New York: W. A. Benjamin, 1969) 239 p. Google book

4. F.J. Yndurain. The Theory of Quark and Gluon Interactions (Berlin: Springer-Verlag, 2006) 476 p. Google book

5. L.B. Okun. Elementary Particle Physics (Moskva: Nauka, 1988) 272 p. (Rus) Google book

6. V.V. Anisovich et al. Quark Model and High Energy Collisions (London: World Scientific, 2004) 530 p. Google book

7. E.M. Henley, A. Garcia. Subatomic Physics (London: World Scientific, 2007) 620 p.

8. M. Tanabashi et al. (Particle Data Group). Review of particle physics. Phys. Rev. D 98 (2018) 030001.

9. B.L. Ioffe. Chiral effective theory of strong interactions. Phys. Usp. 44 (2001) 1211.

10. E.M. Henley, L.K. Morrison. n-n and n-p scattering lengths and charge independence. Phys. Rev. 141 (1966) 1489.

11. T.E.O. Ericson, G.A. Miller. Charge dependence of nuclear forces. Phys. Lett. B 132 (1983) 32.

12. R. Machleidt, M.K. Banerjee. Charge dependence of the πNN coupling constant and charge dependence of the nucleon-nucleon interaction. Few-Body Syst. 28 (2000) 139.

13. V.A. Babenko, N.M. Petrov. Correlation between the properties of the deuteron and the low-energy triplet parameters of neutron-proton scattering. Physics of Atomic Nuclei 66 (2003) 1319.

14. V.A. Babenko, N.M. Petrov. Low-energy parameters of neutron-neutron interaction in the effective-range approximation. Physics of Atomic Nuclei 76 (2013) 684.

15. V.A. Babenko, N.M. Petrov. Study of the charge dependence of the pion-nucleon coupling constant on the basis of data on low-energy nucleon-nucleon interactions. Physics of Atomic Nuclei 79 (2016) 67.

16. A.R. Bodmer. Collapsed nuclei. Phys. Rev. D 4 (1971) 1601.

17. E. Witten. Cosmic separation of phases. Phys. Rev. D 30 (1984) 272.

18. J. Madsen. Physics and astrophysics of strange quark matter. Lect. Not. Phys. 516 (1999) 162.

19. F. Weber. Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 54 (2005) 193.

20. T. Klaehn, D.B. Blaschke. Strange matter in compact stars. EPJ Web of Conferences 171 (2018) 08001.

21. S. Narison. Strange quark mass from e+e- revisited. Phys. Rev. D 74 (2006) 034013.

22. C. Gattringer, C.B. Lang. Quantum Chromodynamics on the Lattice (Berlin: Springer, 2010) 343 p.

23. A. Bazavov et al. Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks. Rev. Mod. Phys. 82 (2010) 1349.

24. V.G. Bornyakov et al. Color confinement and hadron structure in lattice chromodynamics. Phys. Usp. 47 (2004) 17.

25. S. Dürr et al. Ab initio determination of light hadron masses. Science 322 (2008) 1224.

26. V.G. Bornyakov, M.I. Polikarpov. Computing methods in lattice quantum chromodynamics. Teoreticheskaya Fizika 11 (2010) 64. (Rus)

27. S. Dürr et al. Lattice QCD at the physical point: light quark masses. Phys. Lett. B 701 (2011) 265.

28. B.J. Gough et al. The light quark masses from lattice gauge theory. Phys. Rev. Lett. 79 (1997) 1622.

29. M. Kremer et al. Model independent determination of QCD quark masses. Phys. Lett. B 143 (1984) 476.

30. S. Okubo. Asymptotic SU(6)W spectral sum rules II. Phys. Rev. 188 (1969) 2300.

31. H. Leutwyler. Mesons in terms of quarks on a null plane. Nucl. Phys. B 76 (1974) 413.

32. J. Gasser, H. Leutwyler. Implications of scaling for the proton-neutron mass difference. Nucl. Phys. B 94 (1975) 269.

33. S. Weinberg. The problem of mass. Trans. N. Y. Acad. Sci. 38 (1977) 185.

34. A.I. Vajnshtejn et al. Sum rules for light quarks in QCD. Yadernaya Fizika 27 (1978) 514. (Rus)

35. J. Gasser, H. Leutwyler. Quark masses. Phys. Rep. 87 (1982) 77.

36. D.J. Gross et al. Light-quark masses and isospin violation. Phys. Rev. D 19 (1979) 2188.

37. M.A. Shifman et al. QCD and resonance physics: theoretical foundations. Nucl. Phys. B 147 (1979) 385.

38. M.A. Shifman et al. QCD and resonance physics: the ρ-ω mixing. Nucl. Phys. B 147 (1979) 519.

39. B.L. Ioffe. QCD (quantum chromodynamics) at low energies. Prog. Part. Nucl. Phys. 56 (2006) 232.

40. G.-S. Yang et al. Electromagnetic mass differences of SU(3) baryons within a chiral soliton model. Phys. Lett. B 695 (2011) 214.

41. V.A. Babenko, N.M. Petrov. Evaluation of the two lightest quark masses. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18 (2017) 222. (Rus)

42. D.C. Cline et al. The search for new families of elementary particles. Sci. Am. 234 (1976) 44.

43. C. Amsler et al. (Particle Data Group). Review of particle physics. Phys. Lett. B 667 (2008) 1.

44. T. Ishikawa et al. Light-quark masses from unquenched lattice QCD. Phys. Rev. D 78 (2008) 011502.

45. E. Gamiz et al. Vus and ms from hadronic τ decays. Phys. Rev. Lett. 94 (2005) 011803.

46. S. Aoki et al. Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks. Phys. Rev. D 68 (2003) 054502.

47. Q. Mason et al. High-precision determination of the light-quark masses from realistic lattice QCD. Phys. Rev. D 73 (2006) 114501.

48. T.-W. Chiu, T.-H. Hsieh. Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry. Nucl. Phys. B 673 (2003) 217.

49. M. Jamin et al. Scalar Kπ form factor and light-quark masses. Phys. Rev. D 74 (2006) 074009.

50. C. McNeile et al. High-precision c and b masses, and QCD coupling from current-current correlators in lattice and continuum QCD. Phys. Rev. D 82 (2010) 034512.

51. C.T.H. Davies et al. Precise charm to strange mass ratio and light quark masses from full lattice QCD. Phys. Rev. Lett. 104 (2010) 132003.

52. S. Narison. Strange quark, tachyonic gluon masses and |Vus| from hadronic tau decays. Phys. Lett. B 626 (2005) 101.

53. B. Chakraborty et al. High-precision quark masses and QCD coupling from nf = 4 lattice QCD. Phys. Rev. D 91 (2015) 054508.

54. S. Bodenstein et al. Strange quark mass from sum rules with improved perturbative QCD convergence. J. High Energy Phys. 07 (2013) 138.

55. B. Blossier et al. Average up/down, strange, and charm quark masses with Nf = 2 twisted mass lattice QCD. Phys. Rev. D 82 (2010) 114513.

56. T. Blum et al. Electromagnetic mass splittings of the low lying hadrons and quark masses from 2 + 1 flavor lattice QCD+QED. Phys. Rev. D 82 (2010) 094508.

57. L.B. Okun'. Current status of elementary particle physics. Phys. Usp. 41 (1998) 553.