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The resonance structure of 5H is investigated within a three-cluster microscopic model. Hyperspherical Harmonics 

are used to characterize the channels of the three-cluster continuum and to implement the appropriate boundary 
conditions. The model predicts the energy and width of the 5H resonance states well and allows for a detailed channel 
analysis. 
 

1. Introduction 
 

The 5H nucleus has a large neutron excess and 
lies beyond the neutron drip line (see [1] for a 
review of recent progress concerning the drip line 
problem). It has, in the last five years, been the 
object of quite a few experimental [2 - 10] 
investigations. The experimental investigations are 
aimed at finding a clear evidence of the existence of 
resonance structures in 5H, while the theoretical 
research is focused on the interpretation of the 
resonance structure and the determination of its 
energy and width. 

Different experimental approaches are used the 
study 5H. For instance, in [9] the transfer reaction 
1H(6He, 2He)5H was considered. A resonant peak 
was observed at energy 1,7 ± 0,3 MeV above the 
t + n + n threshold with a width of 1,9 ± 0,4 MeV. 
In [5] triple coincidence experiments on the two-
neutron transfer reaction t(t, p)5H revealed a 
resonance at 1,8 ± 0,1 MeV with a small width        

Γ ≤ 0,5 MeV. The two reactions 3H(t, p)5H and 
2H(6He, 3He)5H were considered in the experiments 
in [7] that showed evidence of 5H resonance states at 
1,8 ± ± 0,1 MeV and 2,7 ± 0,1 MeV above the t + n 
+ n threshold. The width of these states is about 
0,4 MeV. In [6] the one proton knockout reaction 
(6He, nnt) on a carbon target uncovered a broad peak 
in the spectrum at 3 MeV with a width of 6 MeV. A 
recent report [3] of the same group confirms this 
result. In [2] the first results are reported on states of 
5H obtained from the reaction initiated by a 6He + 
+ 2He collision. A resonance was observed at 1,8 ± 
+ 0,2 MeV with a width of 1,3 ± 0,5 MeV. However, 
there is a contradiction between two sets of 
experimental results. On one hand [2, 7] there is a 
claim of observing a narrow resonance 1/2+ state in 
5H with E ≈ 1,8 MeV and Γ < 2 MeV; on the other 
hand [4, 6] claim to observe a broad resonance with 
a large energy of E ≈ 2,5 MeV and Γ > 3 MeV. We 
summarize all these experimental results in Table 1. 

 
Table 1. Experimental parameters of 5H resonance states 

 
Experiments References E, MeV Г, MeV E, MeV Г, MeV 

1H(6He, 2He)5H [8] ≈ 2 — — — 
3H(t,p)5H, 

2H(6He, 3He)5H 
[5, 7] 1,8 ± 0,1 < 0,5 2,7 ± 0,1 < 0,5 

C(6He, nnt) [3, 4, 6] ≈ 3 ≈ 6 — — 
2H(6He, 3He)5H [2] 1,8 ± 0,2 1,3 ± 0,5 — — 
1H(6He, 2He)5H [9] 1,7±0,3 1,9 ± 0,4 — — 
1H(6He, 2He)5H [15] ≈ 2 — ≈ 2,5 — 

 
It is believed that the first resonance is a Jπ = 1/2+ 

state, while the second resonance peak has 
contributions from Jπ = 5/2+ and Jπ = 3/2+ states of 5H. 

Different theoretical models and methods have 
been used to calculate the energy and width of the 
resonances. In [11] 5H was described as a three-cluster 
system t + n + n, with t treated as a structureless 
particle. The 3H + n and n + n potentials determine the 
overall interactions and generate a resonance at an 
energy of E = 2,5 - 3,0 MeV with a width of Γ = 3 - 
4 MeV. In [12] was again described as a three-cluster 

system, but now using a full microscopic model. 
Resonance states were obtained by the method of 
analytic continuation in the coupling constant [16, 17]. 
A resonance state was found at an energy E ≈ 3 MeV 
with a width of Γ = 1 - 5 MeV. In [13] the Complex 
Scaling Method was considered, also within a three-
cluster microscopic model. Three resonance states 
were determined with total momenta Jπ = 1/2+, Jπ = 
= 5/2+ and Jπ = 3/2+ respectively. The lowest in energy 
is the 1/2+ resonance with E = 1,59 MeV and width Γ = 
= 2,48 MeV. 



F. ARICKX,  J. BROECKHOVE,  P. HELLINCKX  ET  AL. 
 

                                                                                                                                     ЯДЕРНА  ФІЗИКА  ТА  ЕНЕРГЕТИКА   № 2 (20)   2007 30

Algebraic Version of the Resonating Group 
Method with additional restriction of the Orthogonal 
Condition Method was used in [14] to consider 5H as 
a three-cluster system t + n + n. Evaluated energy of 
1/2+ resonance is more than 4 MeV and width of the 
resonance exceed 5 MeV. 

The problem of an adequate interpretation of the 
theoretical predictions and the connection to the 
experimental data for resonances in the three-cluster 
continuum has been discussed in [18]. 

In this contribution we also present a microscopic 
model that considers 5H as a three-cluster 
configuration t + n + n. This is only one of the 
possible three-cluster configurations for 5H, but 
believed to be the prominent one. Our model is very 
close to the ones used in [12] and [13]. It allows us 
to obtain energies and widths of resonances, but also 
an explicit representation of the corresponding wave 
functions. Moreover, the model also allows 
determining the resonance decay rates with respect 
to the various channels. This in turn makes it 
possible to conjecture about possible ways for 
experimentally finding resonances. The current 
model uses Hyperspherical Harmonics to classify 
the states of the three-cluster system and to 
enumerate the channels of the three-cluster 
continuum. In this respect our method is close to the 
approach considered in [11]. 

 
2. The three-cluster model 

 
We consider the microscopic three-cluster model 

formulated in the context of the Modified J-Matrix 
(MJM), or Algebraic, method described in [19], and 
applied in [20] for the calculation of three-cluster 
resonance states in 6He and 6Be. 

In this contribution we apply it to the 5H nucleus 
with a three-cluster configuration 3H + n + n with 
total spin S = 1/2. Such a wave function contains a 
combination of Young tableaus [32] and [311], and 
the spin of the two-neutron subsystem can be 
S(nn) = 0 or S(nn) = 1. Here it will be applied to the 
three-cluster configuration 3H + n + n for two values 
of the total spin, S = 1/2 and S = 3/2. In the first 
instance, the wave function has a combination of 
Young tableaus [32] and [311], while in the second 
instance there is only one Young tableau [311]. For 
total spin S = 1/2 case, the spin of the two neutrons 
can be S(nn) = 0 or S(nn) = 1. The relative behaviour of 
clusters can be described by two sets of Jacobi 
coordinates, { 1q , 2q } to which we will refer as the 
“Y-tree” or “T-tree”. If the T-tree of the Jacobi 
coordinates is considered, the angular momentum 
connected with the relative motion of the two 
neutrons will be even for S = 0 or odd for S = 1. For 
total spin S = 3/2, the spin of the two neutrons is 

necessarily S(nn) = 1, and only odd values of the nn 
angular momentum are possible. The Young tableau 
classification ([32] and [311]) is diagonal for the 
overlap, or antisymmetrization operator, but will be 
coupled by nucleon-nucleon (NN) forces. The shell 
model wave function of 5H for a configuration of 
three nucleons in the s-shell and two neutrons in the 
p-shell, has SU(3) symmetry (λ,µ) = (2,0). The 
Elliott indexes λ = 2 and µ = 0 imply that only two 
values of the total orbital angular momentum, L = 0 
and L = 2 will be dominant in 5H. They also indicate 
that the spin of the two-neutron subsystem S(nn) = 0 
would prevail for the low-lying states of 5H. 

The three-cluster wave function can be written as 
 

( ) ( ) ( ) ( ){ }; 1 2 2 1 2
ˆ ,LS JM LS JM
A t n n q qφΨ = ⎡Φ Φ Φ ⎤⎣ ⎦ , (1) 

 

where ( )1 tΦ  is an antisymmetric shell-model wave 
function describing the internal structure of the triton 
with three nucleons in the s-shell. The neutron wave 
function ( )2 nΦ  only includes spin and isospin 

variables of the neutron. Â  stands for the overall 
antisymmetrization operator. The inter-cluster wave 
function ( )1 2,L q qφ  of relative three-cluster motion 
is to be determined by solving the Schrödinger 
equation with the proper boundary conditions. We 
therefore expand the wave function ( )1 2,L q qφ  onto 
a Hyperspherical Harmonic basis [19 - 24]. 
 

( ) ( ) ( ) ( ){ }1 2 1 2

1 2

1 2 , ; 1 2
,

, ,L l l L l l LM
l l

q q Y q Y qφ φ ρ ϑ= =∑  

(2) 
( ) ( ) ( ) ( ) ( ){ }1 2

1 2 1 2

1 2

,
; , ; 1 2

,

l l
K l l L K l l LM

K l l
Y q Y qφ ρ χ ϑ= ∑ . 

 

Hypermomentum K and partial angular momenta 1l  
(along 1q ) and 2l (along 2q ) define the three-cluster 
geometry, and characterize the different scattering 
channels. These three quantum numbers will be 
collectively denoted as c = {K; l1, l2}. The 
hyperradial wave function will be expanded onto the 
basis of the 6-dimensional radial oscillator: 
 

( ) ( ) ( ) ( ),
,

c L K
n nc l

n
C ρ ρ

ρ

φ ρ ρ= Φ∑ .           (3) 

 
We solve the Schrödinger equation by 

substituting (1) as an ansatz with (2), (3) and obtain 
a matrix equation in the expansion coefficients 

( );c L
nC ρ

 (see [19] and [20]). Because of the oscillator 

expansion, we can obtain the solution through the 
Modified J-Matrix approach, or Algebraic Model 
[19]. This is an implementation of the Resonating 
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Group Method in function space. As in coordinate 
space, we distinguish an interaction and an 
asymptotic region, but now in the space of 
expansion coefficients. The latter are split in two 
subsets: the first set represents the three-cluster wave 
function in the internal region and is determined by 
solving the Schrödinger matrix equation; the second 
set is connected with the asymptotic form of the 
wave functions and has to represent the proper 
boundary conditions. The asymptotic set for a 
scattering boundary condition is obtained from the 
solution of reference hamiltonians describing three 
non-interacting clusters. These hamiltonians are 
defined in [19] and [20]. There will be cN  (the 
number of channels) independent solutions, with an 
asymptotic behaviour for large hyperradius ρ  

 

( ) ( ) ( ) ( ) ( )00 ( )
1 1 2 2 3 3 5

cc
c cc

c
A A A f ρ χ→Φ Φ ΦΨ Ω∑ , (4) 

 

c0 referring to the incoming channel, and ( )0c
cf  

denoting the asymptotic expansion coefficients, 
defined as 
 

( ) ( ) ( ) ( )0
0 0, ,

c
c c c cc cc kf S ρψ ψδ − +→ − .          (5) 

 

Here ( ) ( ) ( ) ( )( )c ck kρ ρψ ψ− + is the incoming 

(outgoing) channel wave function and 
0 ,c cS  is the   

S-matrix describing the transition from the initial 
channel 0c to the final channel c . 

We obtain the resonance parameters from the 
eigenphase shifts. These are obtained by 
diagonalizing the S-matrix, so that in this 
eigenchannel representation one obtains                
(α-enumerates the uncoupled eigenchannels) 

 

{ }exp 2 , 1,2,..., ciS Nα δ α= = . 
 

The relation between the original ,c cS ′  and 
diagonal Sα forms of the S- matrix is 

 

,
c c

c cS U S Uα α α
α

′
′ = ∑  

 

with cU α an orthogonal matrix. The extraction of 
resonance position and width is done in the 
traditional way by 
 

12

2 0, 2
E E E E

d d
dE dE

α α

α αδ δ −

= =

⎛ ⎞= Γ = ⎜ ⎟
⎝ ⎠

          (6) 

 
The eigenchannel wave functions are then 

 
0

0

0

c
c

c
Uα α= =Ψ Ψ∑                         

( ) ( ) ( ) ( ) ( )00

0

1 31 2 2 3 5
ˆ cc

c c c
c c

A fU ρ χ
⎧ ⎫⎪ ⎪= Α Φ Α Α ΩΦ Φ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (7) 

 
so that in the asymptotic region following relation 
holds 
 

( ) ( ) ( ) ( ) ( )00

0

5 5
cc

cc
c c

f fU ααα ρ χ ρ χΩ = Ω =∑ ∑  

 

( ) ( ) ( ) ( ) ( )5k S kασαασ
σ σ

ρ ρ χψ +−⎡ ⎤= − ΩΨ⎢ ⎥⎣ ⎦
∑ ∑ ,      (8) 

 

where 
 

( ) ( ) ( ) ( ) ( ) ( )c c
c

c
k k kU Uασ αα σ ασ

σ

ρ ρ ρδ± ± ±= =Ψ Ψ Ψ∑∑ . 

 
The eigenphases can be analyze by considering the 
Breit - Wigner resonance formula in each 
eigenchannel 
 

1 arctan
2 E E

α
α α

α

δ φ
⎛ ⎞Γ

= + ⎜ ⎟−⎝ ⎠
,                 (9) 

 
where αΓ  is the total width of the α-labelled 
resonance and αφ a background phase shift. The      
S-matrix for eigenchannels α around α -resonance 
then has the form 

 

{ } { } 2exp 2 exp 2

2

iE E
S i i iE E

α α

α α α

α α

δ φ

⎡ ⎤− − Γ⎢ ⎥
= = ⎢ ⎥

⎢ ⎥− + Γ
⎣ ⎦

. (10) 

 
The S-matrix in original representation can be 

expressed in the eigenchannel representation as 
 

c c
ccS SU Uα αα

α

′
′ = =∑  

 

{ } 2exp 2

2

c c

iE E
iU UiE E

α α

α αα
α

α α

φ ′

⎡ ⎤− − Γ⎢ ⎥
= ⎢ ⎥

⎢ ⎥− + Γ
⎣ ⎦

∑ . (11) 

 

The following expression for a many-channel    
S-matrix is commonly used 

 

( )

2

bg c c
cccc

r r

S iS iE E

′
′′

Γ Γ
= −

− + Γ
,              (12) 

 
where rΓ is the total width of the resonance state and 

cΓ  (c = 1, 2, … , Nc) are the partial widths, 
indicating the decay rate of the compound resonance 
into the partial channels c. The sum of the partial 
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widths equals the total width. ( )bg
ccS ′ stands for the 

background S-matrix and is assumed to be a 
monotonic function of energy. It is sometimes 
assumed that background scattering only occurs on 
the diagonal of the S-matrix, i.e. ( ) ( )bg bg

cc ccccS Sδ′ ′′=  
We now show that the eigenchannel 

representation suggests a new expression for the 
many-channel resonance form of the S-matrix, and a 
simple way to calculate partial widths. We assume 
that resonance with a label α  manifests itself in the 
eigenchannel with the same label only. Other 
eigenchannels don't exhibit resonance behaviour in 
the energy range around resonance energy Eα . This 
assumption is based on author's experience (see, for 
instance [20, 30]) and means that there are no so-
called shadow resonances in other eigenchannels. 
With this assumption we rewrite (11) as 

 

( ) { } { }exp exp

2

c c
bg

cccc
U US i i iS iE E

α αα
α α

α
α α

φ φ
′

′′

⎡ ⎤
⎢ ⎥Γ

= − =⎢ ⎥
⎢ ⎥− + Γ
⎣ ⎦

∑

(13) 

( ) { } { }exp exp

2

bg c c
cc i i iS iE E

α α
α α

α
α α

φ φ′
′

⎡ ⎤
Γ Γ⎢ ⎥

= −⎢ ⎥
⎢ ⎥− + Γ
⎣ ⎦

∑ , 

 
where the background S-matrix is 
 

( ) { }exp 2bg c c
cc iS U Uα αα

α

φ ′
′ =∑             (14) 

 
and the partial widths cαΓ  are related to the total 
width αΓ  by 
 

2c
c Uαα αΓ = Γ .                        (15) 

 

As cU α  is an orthogonal matrix one easily verifies 
that the total width is indeed the sum of partial 
widths. Equation (15) suggests a simple way for 
calculating the partial widths for eigenchannel α. 
One notices from (13) that the background phase 
shifts create the background S-matrix, and also 
affect the resonance part. 

 
3. Calculations 

 
In this contribution we consider two NN-interac-

tions: the Minnesota potential (MP) [25] and the 
Modified Hasegawa-Nagata potential (MHN) [26, 
27]. We choose the oscillator radius b to minimize 
the ground state energy of the 3H nucleus. This leads 
to b = 1,489 fm for MP, and b = 1,470 fm for MHN. 

We have also (slightly) modified the parameters of 
the potentials to reproduce the resonance structure of 
4H, as well as the scattering phase shift of a neutron 
from 3H. This was achieved by reducing the u 
parameter of the central part of the MP to 0,98 and 
by reducing the intensity of the LS components of 
the MHN to 0,5. Note that the parameters u = 0,98 
and b = 1,470 fm for MP coincide with those 
selected by Arai [13], but differ with those 
determined in [12] (b = 1,58 fm and u = 1,12). 

The calculation of the potential part of the energy 
matrices is a computationally intensive problem. It 
requires the evaluation of a large number of 
matrices, characterized by the quantum numbers c 
(as in (3) and an additional expansion parameter 
coming from the decomposition in terms of two-
particle operators (ranging from 1 to 45 in the case 
of 5H). All these matrices have then to be 
recomposed using Raynal-Revai coefficients to 
obtain the final result (for details see [19]). In order 
to achieve a reasonable computing time, the 
calculations have been distributed on a grid 
infrastructure. The description of this methodology 
can be found elsewhere [29]. 

An important issue in microscopic calculations 
using a discrete basis lies in the convergence of the 
results. In the current report our calculations are 
limited to a strict maximum of Hyperspherical 
Harmonics with hypermomentum 10L K≤ ≤ , 
within which a sufficiently convergent set will be 
considered. As a result, the full set of three-cluster 
channels consists of 21 channels for total angular 
momentum L = 0, and 45 channels for L = 2, 
representing all possible hyperspherical three-cluster 
decay configurations of the 5H compound system. 
The main parameters to be considered in the 
convergence behavior are: the number of 
Hyperspherical Harmonics in the internal region 
( iK ), respectively asymptotic region aK  and the 
number of hyperradial oscillator shells for each K in 
the internal region ( )iN .  

 
4. Results 

 
The 5H nucleus belongs to the so-called 

Borromean nuclei, i.e. three-cluster systems which 
have no bound state in any of the two-cluster 
subsystems. Still, there are features of the two-
cluster subsystems that can affect the resonance 
states of 5H. For instance, while there is no bound 
state in 4H, it has two resonances states, created by 
the 3H+n channel with total momentum Jπ = 3-, Jπ = 
= 2- and angular momentum L = 1. 

There are two important subsystems in 5H that 
determine its structure. The first one is the two-
cluster subsystem consisting of a triton and a 
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neutron. It is responsible for a set of broad resonance 
states in 4H [28]. The properties of the 4H 
resonances, obtained in our approach for a two-
cluster description with MP, are listed in Table 2. 
They are compared to other theoretical descriptions 
and to experiment. Note that Arai [13] used the 

Complex Scaling Method to obtain resonance 
energy and widths, while Descouvemont and 
Kharbach [12] employed R-matrix theory to extract 
the background phase shift and obtain the resonance 
properties. Our results are obtained from the 
calculated phase shifts by (6). 

 
Table 2. Parameters of the 4H resonance states obtained by Arai, Descouvemont and  

Kharbach (DK) and the current work 
 

L, S, Jπ This work Arai  
[13] 

DK  
[12] 

Experiment  
[28] 

1, 1, 2- 1,65 + i5,60 1,52 + i4,11 3,05 + i5,1 3,19 + i5,42 
1, 1, 1- 1,74 + i9,54 1,23 + i5,80 3,89 + i7,6 3,50 + i6,73 
1, 1, 0- 1,82 + i11,26 1,19 + i6,17 — 5,27 + i8,92 
1, 0, 1- 1,51 + i8,01 1,32 + i4,72 — 6,02 + i12,98 
 
The second important subsystem is the neutron-

neutron two-cluster component. The MP gives 
evidence of a virtual state for Lπ = 0+, S(nn) = 0 state, 
which could be important in the formation of 5H 
resonance states. 

In [20] it was shown that the resonance properties 
in 6He and 6Be are very sensitive to the number of 
Hyperspherical Harmonics in the expansion of the 
internal part of the resonance wave function(s), but 
less sensitive to those in the asymptotic part of the 
function(s), and consequently the decay of the three-
cluster system. It merely shows that the compound 
system requires an extensive description, whereas 
lower Hyperspherical Harmonics describe the decay 
configurations well. The current calculations 
indicate the same behaviour, i.e. the need for an 
involved description of the internal part of the 
solution, but a less stringent content for the 
asymptotic part. 

We present a convergence study for L = 0, Jπ = 
= 1/2+ resonances and MP. In Table 3 we display the 
results for increasing Ki = Ka at Ni = 25. While full 
convergence has not been reached yet, reasonable 
stable results are obtained.  
 
Table 3. Convergence of resonance properties obtained 

with MP for 1/2+ with varying Ki = Ka and Ni = 25 
 

Ka = Ki E, MeV Γ, MeV E, MeV Γ, MeV 
0 — — — — 
2 1,750 3,371 3,700 15,165 
4 1,770 2,875 3,640 15,900 
6 1,680 2,413 4,310 9,356 
8 1,550 1,934 4,250 8,784 

10 1,480 1,763 4,230 7,847 
 
Table 4 displays, for fixed Ki = 10 the 

convergence as a function of Ka, with Ni= 25. One 
notices only a limited effect of the higher Ka-
channels. 

 

Table 4. Convergence of resonance properties obtained 
with MP for 1/2+ with varying Ka and Ki = 10, Ni = 25 

 
Ka E, MeV Γ, MeV E, MeV Γ, MeV 
0 2,240 0,865 — — 
2 1,530 1,797 3,380 18,813 
4 1,520 1,787 3,840 11,709 
6 1,500 1,780 4,260 8,051 
8 1,490 1,783 4,220 7,841 

10 1,480 1,777 4,180 7,746 
 

The matter of convergence in terms of Ni is less 
clear. The results obtained with Ni = 25 are stable 
and reasonably converged. Increasing Ni leads to 
slightly modified values for the resonance shape, 
possibly due to numerical instabilities from 
accumulation errors when calculating matrix 
elements for high hyperradial quantum numbers. 
Consequently, and also to limit the computational 
burden, we will limit ourselves to the calculation of 
all following results with Ki = Ka = 8, Ni = 25. We 
consider these to be sufficiently converged and 
numerically stable. 

Fig. 1 shows the eigenphases obtained with MP 
for L = 0 Jπ = 1/2+ and Fig. 2 shows those for L = 2, 
Jπ = 3/2+ and Jπ = 5/2+. The figures clearly indicate a 
number of resonances, whose properties can be 
obtained using (6). In the Table 5 we compare 
energies and widths of the lowest resonances of 5H 
for each Jπ from the present calculations to other 
theoretical results. The current results are close to 
those of Arai [13], but are different from the ones of 
[12] obtained in a microscopic model, and of [11] 
obtained in a semi-microscopic model. Our results 
are very close to Arai's for the energy of the 5H ”1/2+ 

ground state”, while the energy and width for the 
3/2+ and 5/2+ states are 1,5 - 2,5 times smaller than 
Arai's. This may be due to small differences in the 
model spaces involved in both calculations, and to 
different methods used for extracting the poles of the 
S-matrix. 
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Fig. 1. Eigenphase obtained for L = 0, Jπ = 1/2+ with MP. 
 

 
 

Fig. 2. Eigenphases obtained for L = 2, J = 3/2+ (top) and J = 5/2+ (bottom) with MP. 
 
The effects of different NN-forces are shown in 

Table 6. Despite the quite different features of the 
MP and MHN potentials, the energy and width of 
the lowest resonance states for the L = 0 and L = 2 
momenta are comparable to each other. The 

differences are more important for the second 
resonance states. It indicates that the position of the 
lowest resonance states is determined mainly by the 
3H + n subsystem, and that there is a small influence 
of the nn subsystem. 
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Table 5. Resonance data of 5H, obtained with MP, and results of other theoretical approaches. 
E and Γ in MeV units 

 
Jπ ½+ 3/2+ 5/2+ 

 E Γ E Γ E Γ 
This work 1,48 1,78 2,00 1,55 2,38 3,98 
Arai [13] 1,59 2,48 2,90 4,10 3,00 4,80 

Shul’gina [11] 2,5-3,0 3 - 4 4,6-5,0 5,00 6,4 - 6,9 8,00 
DK [12] 2,8-3,0 1 - 2 — — — — 

 
Table 6. Results of our calculations with the MP and MHN 

 
L, Jπ MP MNP MP MNP 
0, ½+ 1,55 + i1,93 1,46 + i1,27 2,61 + i528 4,36 + i8,17 

2, 5/2+ 2,00 + i1,55 2,28 + i1,82 3,69 + i2,98 3,88 + i4,23 
2, 3/2+ 2,38 + i3,98 2,71 + i3,81 4,05 + i6,21 4,65 + i7,62 

 
We use equation (15) to determine the partial 

width of the 5H resonances in order to analyze the 
resonance content. In Table 7 we display for MP the 
total width and the three largest values of partial 
widths, with explicit indication of the corresponding 
channel { }1 2; ,c K l l= . For MHN, analogous results 
are obtained. One finds that only two or three 
channels of the three-cluster continuum participate 

in creating the resonances of 5H. More than 70 % of 
the total width corresponds to the decay of the 
compound system into channels with hyper-
momentum K = 2, with a main contribution coming 
from zero angular momentum l2 of the nn 
subsystem. It is a strong indication that the nn state 
with S(nn) = 0 is dominant in the resonances we are 
investigating. 

 
Table 7. Results of our calculations. Total and partial width 

 
L, Jπ E + iΓ Γ1, c1 Γ2, c2 Γ3, c3 
0, ½+ 1,550 + i1,934 1,376, {2,0,0} 0,552, {0,0,0} 0,005, {4,0,0} 

2, 5/2+ 2,000 + i1,551 1,116, {2,2,0} 0,384, {2,0,2} 0,016, {2,1,1} 
2, 3/2+ 2,380 + i3,982 3,162, {2,2,0} 0,612, {2,0,2} 0,093, {4,2,0} 

 
A further analysis can be made directly on the resonance wave functions by showing its density 

( ) 2
1 2; ,E r rα αΨ , and corresponding correlation function ( ) 22 2

1 2 1 2; ,E r rr r α αΨ , as a function of the r1 and r2 

coordinates where i
i

i

qr
µ

= , and iµ  is the reduced mass. Fig. 3 shows a visualization for these quantities for 

the lowest L = 0, Jπ = 1/2+ and L = 2, Jπ = 3/2+  (L = 2, Jπ = 5/2+ being quite identical) resonance states of MP. 

Fig. 3. Wave function density and 
correlation function (see text) for 
the lowest L = 0, Jπ = 1/2+ (top 
row) and L = 2, Jπ = 3/2+ (bottom 
row) obtained with MP. 
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5. Conclusions 
 

We have considered the 5H nucleus as a three-
cluster configuration t + n + n within a microscopic 
model. It treats the Pauli principle exactly and takes 
the proper boundary conditions for a three-body 
continuum into account. For this aim the 
hyperspherical harmonics have been used. It was 
demonstrated that the set of the hyperspherical 
harmonics, used in the calculations, is extensive 
enough to provide reliable and convergent results. A 
number of resonances for Jπ = 1/2+, Jπ = 3/2+ and 
Jπ = 5/2+ states of 5H are obtained. The energies and 
widths of the resonances are in a reasonable 
agreement with the experimental data. We have 
calculated total and partial widths to identify the 
most prominent channels for decay of the three-
cluster resonances in 5H. 

We have found that there is a weak coupling 
between different three-cluster channels. This is 

confirmed by the fact that only two hyperspherical 
harmonics dominate in all resonance states. 
Moreover, one of these harmonics gives more than 
seventy percent contribution to the asymptotic part 
of resonance wave function. 
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РЕЗОНАНСИ  В  ТРИКЛАСТЕРНОМУ  КОНТИНУУМІ  ЯДЕР  5H  

 
Ф. Арікс,  Й. Брокхов,  П. Хелінкс,  В. С. Василевський,  О. В. Нестеров  

 
У рамках трикластерної мікроскопічної моделі розглянуто структуру резонансів ядра 5H. Для класифікації 

станів та задання граничних умов у трикластерному континуумі використовувався метод гіперсферичних 
функцій. Модель дає розумні енергії та ширини резонансних станів 5H і дозволяє провести детальний аналіз 
вірогідностей розпаду по різних каналах. 
 

РЕЗОНАНСЫ  В  ТРЕХКЛАСТЕРНОМ  КОНТИНУУМЕ  ЯДЕР  5H 
 

Ф. Арикс, Й. Брокхов,  П. Хелинкс,  В.С. Василевский,  А. В. Нестеров 
 

В рамках трехкластерной микроскопической модели рассмотрена структура резонансов ядра 5H. Для 
классификации состояний и задания граничных условий в трехкластерном континууме использовался метод 
гиперсферических функций. Модель дает разумные энергии и ширины резонансных состояний 5H и позволяет 
провести детальный анализ вероятностей распада по различным каналам. 
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