Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 1, pages 18-25.
Section: Nuclear Physics.
Received: 07.12.2018; Accepted: 17.04.2019; Published online: 26.06.2019.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2019.01.018

orrective phase in the approximation of space-time analysis with accounting interference in collisions of heavy ions

S. O. Omelchenko*, V. S. Olkhovsky

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: sergomel@ukr.net

Abstract: The aim of the work is to expand the approximation of the space-time analysis, which was previously used to describe binary elastic nucleon scattering reactions on nuclei and light ion collisions, to consider coherent effects in heavy ion collisions with three particles in the final reaction channel, two of which are detected. The concept of the corrective phase obtained due to the space-time approach is introduced. In the random-phase approximation, an analysis of the calculation expressions is considered, depending on the degree of resonances overlapping in the compound-nuclear structure.

Keywords: corrective phase, coherent effects, space-time shift, compound-nuclear resonances.

References:

1. V.S. Olkhovsky, S.O. Omelchenko. Effect of compound-nucleus motion on interference between direct and compound-nucleus amplitudes in scattering of neutrons on atomic nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(2) (2016) 130. (Rus) https://doi.org/10.15407/jnpae2016.02.130

2. V.S. Olkhovsky, M.E. Dolinska, S.A. Omelchenko. On scattering cross sections and durations near an isolated compound-resonance, distorted by the non-resonant background in the center-of-mass and laboratory systems. Appl. Phys. Lett. 99 (2011) 244103 https://doi.org/10.1063/1.3656705 (arXiv:1101.5541v1 [nucl-th] https://arxiv.org/abs/1101.5541).

3. V.S. Olkhovsky, S.A. Omelchenko. On the space-time description of interference phenomena in nuclear reactions with three particles in the final channel. The Open Nuclear and Particle Physics Journal 4 (2011) 27. https://doi.org/10.2174/1874415X01104010027

4. G.I. Kopylov, M.I. Podgoretsky. Correlations of identical particles emitted by highly excited nuclei. Yad. Fiz. 15 (1972) 392. [Sov. J. Nucl. Phys. 15 (1972) 219]; G.I. Kopylov. Like particle correlations as a tool to study the multiple production mechanism. Phys. Lett. B 50 (1974) 472. https://doi.org/10.1016/0370-2693(74)90263-9

5. S.E. Koonin, W. Bauer, A. Schafer. Interferometry of the compound nucleus. Phys. Rev. Lett. 62 (11) (1989) 1247. https://doi.org/10.1103/PhysRevLett.62.1247

6. W. Dunnweber et al. Quantum-Statistical Interference of Coincident Neutrons from the Compound Nucleus. Phys. Rev. Lett. 65 (1990) 297. https://doi.org/10.1103/PhysRevLett.65.297

7. W. Bauer, C. Gelbke, S. Pratt. Hadronic Interferometry in Heavy-Ion Collisions. Annu. Rev. Nucl. Part. Sci. 42(1) (1992) 77. https://doi.org/10.1146/annurev.ns.42.120192.000453

8. V. Olkhovsky et al. On Interference Effects in Light-Ion Nuclear Reactions with Three Particles in the Final State. Progr. Theor. Phys. 87 (1992) 1359. https://doi.org/10.1143/PTP.87.1359

9. V.S. Olkhovsky, A.K. Zaichenko. About the influence of space-time separations between sources of α-particle emission in the reaction p + 11B→3α on interference phenomena in their spectra. Phys. Lett. B 272 (1991) 183. https://doi.org/10.1016/0370-2693(91)91816-E

10. G. Fazio et al. On interference effects in heavy-ion collision with emission of two particles. Proc. Int. Symp. "Large-Scale Collective Motion of Atomic Nuclei" (Brolo). Eds. G. Giardina, G. Fazio, M. Lattuada (Singapore: World Scientific, 1997) p. 425.

11. V. Lyuboshitz. On collision duration in the presence of strong overlapping resonance levels. Phys. Lett. B 72 (1977) 41. https://doi.org/10.1016/0370-2693(77)90058-2

12. V.L. Lyuboshitz Unitary sum rules and collision times in strong overlap of resonance levels. JETP Lett. 28(1) (1978) 30. http://www.jetpletters.ac.ru/ps/1556/article_23819.shtml

13. R. Hanbury-Brown, R.Q. Twiss. A Test of a new type of stellar interferometer on Sirius. Nature 178 (1956) 1046. https://doi.org/10.1038/1781046a0

14. D.H. Boal, C.K. Gelbke, B.K. Jennings. Intensity interferometry in subatomic physics. Rev. Mod. Phys. 62 (1990) 553. https://doi.org/10.1103/RevModPhys.62.553

15. V.S. Olkhovsky. To the study of nuclear reactions and decays by analyzing their durations. Fizika Elementarnykh Chastits i Atomnogo Yadra 15 (1984) 289. [Sov. J. Part. Nucl. 15(2) (1984) 130]. (Rus) http://www1.jinr.ru/Archive/Pepan/1984-v15/v-15-2/2.htm

16. S.A. Karamyan, Yu.V. Melikov, A.F. Tulinov. On the use of the shadow effect to measure the time course of nuclear reactions. Fizika Elementarnykh Chastits i Atomnogo Yadra 4(2) (1973) 456. (Rus) http://www1.jinr.ru/Archive/Pepan/1973-v4/v-4-2/3.htm

17. T. Ericson. Fluctuations of nuclear cross sections in the continuum region. Phys. Rev. Lett. 5 (1960) 430 https://doi.org/10.1103/PhysRevLett.5.430;
D.M. Brink, R.O. Stephen, N.W. Tanner. The angular cross-correlation function of cross-section fluctuations. Nucl. Phys. 54 (1964) 577. https://doi.org/10.1016/0029-5582(64)90436-5

18. T. Ajzenberg-Selove, T. Lauritsen. Energy levels of light nuclei (VII) A = 5 - 10. Nucl. Phys. 78 (1966) 1. https://doi.org/10.1016/0029-5582(66)90997-7

19. M. Simonius. Overlapping resonances and unitarity of the scattering matrix. Nucl. Phys. A 218 (1974) 53. https://doi.org/10.1016/0375-9474(74)90019-0

20. R. Fox. Measurement of nuclear transitions with 10-20 sec half-lives and the scattering cross sections of unstable particles by proximity scattering. Phys. Rev. 125 (1962) 311. https://doi.org/10.1103/PhysRev.125.311

21. J. Lang et al. Direct determination of a short nuclear lifetime (~10-20 s) by the proximity scattering method. Nucl. Phys. 88 (1966) 576. https://doi.org/10.1016/0029-5582(66)90416-0