Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 3, pages 213-220.
Section: Nuclear Physics.
Received: 20.06.2019; Accepted: 10.10.2019; Published online: 30.11.2019.
PDF Full text (en)
https://doi.org/10.15407/jnpae2019.03.213

Test of models for photon strength functions of electric dipole photoexcitation

V. A. Plujko1,2, S. Goriely3, O. M. Gorbachenko1, K. M. Solodovnyk1,*

1 Nuclear Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Institut dAstronomie et dAstrophysique, Universite Libre de Bruxelles, Brussels, Belgium


*Corresponding author. E-mail address: e.solodovnyk@gmail.com

Abstract: Closed-form models for photon strength functions for the description of photoabsorption cross section in the energy range 5 - 30 MeV for even-even nuclei are tested. The experimental database was prepared with systematic uncertainty less than 10 % from the EXFOR data. The uncertainties are estimated using the calculations of the photo cross sections within TALYS 1.6 code. The theoretical models are compared with experimental photoabsorption cross section data. The minimum of the least-square deviation and the root-mean-square deviation factor are used as a criteria comparison of the theoretical calculations with experimental data. It is shown that the simple modified Lorentzian model is the best approach for simulation of the photoabsorption cross section at the gamma-ray energies below ~ 30 MeV.

Keywords: models of photon strength functions, photoabsorption, giant dipole resonance.

References:

1. S. Goriely, M. Wiedeking, P. Dimitriou, Updating the Photonuclear Data Library and Generating a Reference Database for Photon Strength Functions, Summary Report from the First Research Coordination Meeting, INDC(NDS)-0712, 2016. https://www-nds.iaea.org/publications/indc/indc-nds-0712.pdf

2. M.B. Chadwick et al. Handbook on Photonuclear Data for Applications: Cross Sections and Spectra. Tech. Rep. IAEA-TECDOC-1178, (IAEA, Vienna, Austria, 2000). https://www-pub.iaea.org/MTCD/Publications/PDF/te_1178_prn.pdf

3. R. Capote et al. RIPL Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004; http://www-nds.iaea.org/RIPL-3/

4. M. Herman et al. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets 108 (2007) 2655. https://doi.org/10.1016/j.nds.2007.11.003

5. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0. In: Proc. Intern. Conf. Nuclear Data for Science and Technology (ND2007), Nice, France, April 22 - 27, 2007. Ed. by O. Bersillon et al. CEA, EDP Sciences, 2008, p. 211. https://doi.org/10.1051/ndata:07767; www.TALYS.eu

6. G.A. Bartholomew et al. Gamma-ray strength functions. Adv. Nucl. Phys. 7 (1973) 229. https://doi.org/10.1007/978-1-4615-9044-6_4

7. V.A. Plujko et al. Giant Dipole Resonance Parameters of Ground-State Photoabsorption: Experimental Values with Uncertainties. At. Data Nucl. Data Tables 123 - 124 (2018) 1. https://doi.org/10.1016/j.adt.2018.03.002

8. J. Kopecky, M. Uhl. Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 41 (1990) 1941. https://doi.org/10.1103/PhysRevC.41.1941

9. V. Plujko et al. Models for photoabsorption cross section estimates. Proc. Intern. Conf. on Nuclear Data for Science and Technology (ND2007), Nice, France, April 22 - 27, 2007. Ed. by O. Bersillon et al. CEA, EDP Sciences, 2008, p. 235. http://dx.doi.org/10.1051/ndata:07731

10. V. Plujko et al. Verification of models for calculation of E1 radiative strength. Proc. of Science PoS(PSF07)002. https://doi.org/10.22323/1.044.0002

11. V.A. Plujko et al. The simplified description of dipole radiative strength function. Int. J. Mod. Phys. E 17 (2008) 240. https://doi.org/10.1142/S0218301308009744

12. V.A. Plujko, R. Capote, O.M. Gorbachenko. Giant dipole resonance parameters with uncertainties from photonuclear cross sections. At. Data Nucl. Data Tables 97 (2011) 567. https://doi.org/10.1016/j.adt.2011.04.001

13. S. Goriely, V. Plujko. Simple empirical E1 and M1 strength functions for practical applications. Phys. Rev. C 99 (2019) 014303. https://doi.org/10.1103/PhysRevC.99.014303

14. A.R. Junghans et al. Photon data shed new light upon the GDR spreading width in heavy nuclei. Phys. Lett. B 670 (2008) 200. https://doi.org/10.1016/j.physletb.2008.10.055

15. E. Grosse, A.R. Junghans, R. Massarczyk. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data. Eur. Phys. J. A 53 (2017) 225. https://doi.org/10.1140/epja/i2017-12415-2

16. M.B. Chadwick et al. Pauli-blocking in the quasideuteron model of photoabsorption. Phys. Rev. C 44 (1991) 814. https://doi.org/10.1103/PhysRevC.44.814

17. T. Belgya et al. Handbook for Calculations of Nuclear Reaction Data, Reference Input Parameter Library-2. Tech. Rep. IAEA-TECDOC-1506 (IAEA, Vienna, Austria, 2006). http://www-nds.iaea.org/RIPL-2/

18. Y. Alhassid, B. Busch, S. Levit. Thermal Shape Fluctuations, Landau Theory, and Giant Dipole Resonances in Hot Rotating Nuclei. Phys. Rev. Lett. 61 (1988) 1926. https://doi.org/10.1103/PhysRevLett.61.1926

19. Y. Alhassid, B. Busch. Effects of thermal fluctuations on giant dipole resonances in hot rotating nuclei. Nucl. Phys. A 509 (1990) 461. https://doi.org/10.1016/0375-9474(90)90087-3

20. W.D. Myers et al. Droplet model of the giant dipole resonance. Phys. Rev. C 15 (1977) 2032. https://doi.org/10.1103/PhysRevC.15.2032

21. J.M. Eisenberg, W.M. Greiner. Nuclear Theory. Vol. I: Nuclear Models. 3-rd ed. (North Holland, Amsterdam 1987). Google Books

22. B. Bush, Y. Alhassid. On the width of the giant dipole resonance in deformed nuclei. Nucl. Phys. A 531 (1991) 27. https://doi.org/10.1016/0375-9474(91)90566-O

23. R.W. Hasse, W.D. Myers. Geometrical Relationships of Macroscopic Nuclear Physics (Springer-Verlag, Heidelberg, 1988). https://doi.org/10.1007/978-3-642-83017-4

24. J.-P. Delaroche et al. Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81 (2010) 014303. https://doi.org/10.1103/PhysRevC.81.014303; tables available at: http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/tables/HFB-5DCH-table.htm

25. A.R. Junghans et al. A global study of the electric dipole strength in heavy nuclei. Poster 1481 at Intern. Conf. on Nuclear Data for Science and Technology, Island, Jeju, 2010. http://www.hzdr.de/DB/Cms?pOid=32613

26. E. Grosse et al. The energy dependence of the electric dipole strength in heavy nuclei. AIP Conf. Proc. 1090 (2009) 308. https://doi.org/10.1063/1.3087034

27. E. Grosse et al. Photon strength in spherical and deformed heavy nuclei. EPJ Web of Conf. 8 (2010) 02006. https://doi.org/10.1051/epjconf/20100802006

28. EXFOR, Experimental Nuclear Reaction Data Library. http://www-nds.iaea.org/exfor/

29. H. Beil et al. A semi-phenomenological description of the giant dipole resonance width. Nucl. Phys. A 219 (1974) 61. https://doi.org/10.1016/0375-9474(74)90082-7

30. H. Utsunomiya et al. Photoneutron cross-sections for Mo isotopes: A step toward a unified understanding of (γ,n) and (n,γ) reactions. Phys. Rev. C 88 (2013) 015805. https://doi.org/10.1103/PhysRevC.88.015805

31. A. Gilbert, A.G.W. Cameron. A composite nuclear-level density formula with shell corrections. Can. Jour. of Phys. 43 (1965) 1446. https://doi.org/10.1139/p65-139

32. V.V. Varlamov, M.E. Stepanov, V.V. Chesnokov. New data on photoabsorption reaction cross-sections. Bull. Rus. Acad. Sci. Phys. 67 (2003) 724. (Izv. Ross. Akad. Nauk. Ser. Fiz. 67 (2003) 656 (Rus)).

33. G.M. Gurevich et al. Giant resonance in the total photoabsorption cross section of Z ≈ 90 nuclei. Nucl. Phys. A 273 (1976) 326. https://doi.org/10.1016/0375-9474(76)90594-7