Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 3, pages 304-310.
Section: Radiobiology and Radioecology.
Received: 10.05.2019; Accepted: 11.07.2019; Published online: 30.11.2019.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2019.03.304

Decontamination of water objects from 137Cs by means of bioplateau

O. M. Mikhyeyev, O. V. Lapan*

Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: k.lapan@ukr.net

Abstract: Mobile bioplateau design has been developed for water bodies treatment from ions 137Cs. Comparative study of the cleaning efficiency of different species of plants-hyperaccumulators of the aqueous medium from radiocaesium ions has been carried out. The distribution of 137Cs by structural components of bioplateau has been investigated. The model of accumulation of radioactivity in the "experimental reservoir – plants (bioplateau)" system was created.

Keywords: phytoremediation, bioplateau, land plants, radionuclides, 137Cs.

References:

1. P.A. Yakimchuk. Cytogenetic consequences of radionuclide contamination of the 30-km zone after 25 years after the Chernobyl accident. Fiziologiya i Biokhimiya Kulturnykh Rasteniy 45 (2013) 260. (Ukr) http://dspace.nbuv.gov.ua/handle/123456789/66486

2. O.M. Volkova et al. Radionuclide distribution parameters in reservoirs of different trophic status. Pryroda Zakhidnoho Polissya ta Prylehlykh Terytoriy 11 (2014) 127. (Ukr) Article

3. N.Yu. Mirzoeva et al.. Migration flows and deposition of 90Sr and 137Cs post-accident radionuclides in different parts of the Black Sea (elements of biogeochemical cycles). Naukovi Pratsi Chornomorskoho Derzhavnoho Universytetu Imeni Petra Mohyly. Ser.: Tekhnohenna Bezpeka 210 (2013) 45. (Ukr) Article

4. V.D. Romanenko et al. Hydroecological safety of nuclear power of Ukraine. Visnyk NAN Ukrayiny 6 (2012) 41. (Ukr) https://doi.org/10.15407/visn2012.06.041

5. V.D. Romanenko. Strategic directions of water-ecological policy in Ukraine. Naukovi Zapysky Ternopilskoho Natsionalnoho Pedahohichnoho Universytetu Imeni V. Hnatyuka. Spetsialnyy Vypusk: Hidroekolohiya 16 (2011) 222. (Ukr)

6. V.S. Dikarevsky et al. Diversion and Treatment of Surface Wastewater (Leningrad: Stroyizdat, 2000) 224 p. (Rus)

7. L.I. Bekh, S.K. Khodakivsky. Biological Sewage Treatment, Justification of Methods (Kharkiv: KhNU, 2001) 290 p. (Ukr)

8. A.E. Vasyukov. Accumulation of metals by macrophytes in reservoirs of the Zaporizhzhya NPP zone. Gidrobiologicheskiy Zhurnal 39(3) (2003) 94. (Rus)

9. Yu.G. Krot. Higher plants in biotechnology for surface and wastewater treatment. Gidrobiologicheskiy Zhurnal 42(1) (2006) 47. (Rus)

10. D.V. Ulrich, M.N. Bryukhov. The possibility of using phytoremediation facilities in wastewater treatment. In: Science of South Ural State University. Proc. of the 66-th Scientific Conf. (Chelyabinsk, 2014) p. 1050. (Rus)

11. I.V. Glazunova, A.K. Romashchenko, K.A. Tishina. Bioengineering facilities and reservoirs for local drainage for the most efficient use of river water resources. Prirodoobustroystvo 2 (2018) 46. (Rus) http://elib.timacad.ru/dl/full/gmgup-08-2018-02.pdf/info

12. S.S. Timofeeva, D.V. Ulrich, S.S. Timofeev. Phytofilters for wastewater treatment. Vestnik Tekhnologicheskogo Universiteta 19 (2016) 162. (Rus)

13. S.M. Madzhd, A.O. Panchenko, A.M. Bondar. The role of the higher aquatic plants in destruction of pollutants in the bioengineering hydrophytic structures. Naukoyemni Tekhnolohiyi 1 (2017) 89. (Ukr) http://jrnl.nau.edu.ua/index.php/SBT/article/view/11564

14. E.E. Nefed'eva et al. Wastewater treatment using phytoremediation. Vestnik Tekhnologicheskogo Universiteta 20 (2017) 145. (Rus)

15. A.A. Protasov, A.I. Tsybulsky. Features of the formation of aquatic and near-water vegetation in the cooling pond of the Khmelnitsky NPP under the conditions of an unstable water level regime. Yaderna Enerhetyka ta Dovkillya 1 (2017) 58. (Rus) http://dnic.com.ua/_ld/1/107__1_9_2017_final.pdf

16. V.G. Magmedov. Efficiency of an infiltration bioplato as a multi-purpose water protection facility. Vodnyye Resursy 6 (1986) 93. (Rus)

17. Yu.N. Sokolov et al. Use of bioplato to reduce biogenic pollution of water reservoirs and streams. Visnyk Odeskoho Derzhavnoho Ekolohichnoho Universytetu 7 (2009) 20. (Ukr) http://bulletin.odeku.edu.ua/wp-content/uploads/2009/06/5-Sokolov-Plotnizki-Striuk-Diakov.pdf

18. O.P. Oksiyuk, G.N. Oleynik. Bioplato and its use on channels. Gidrotekhnika i Melioratsiya 8 (1990) 66. (Rus)

19. S.M. Madzhd. Operating experience of hydrophytic constructions in Ukraine and in the world. Naukoyemni Tekhnolohiyi 2 (2016) 228. (Ukr) http://jrnl.nau.edu.ua/index.php/SBT/article/view/10569

20. S.M. Madzhd. The role of hydrotechnology systems in increasing the degree of return water treatment. In: VI All-Ukrainian Intern. Congr. of Ecologists. Vinnytsia, September 20 - 22, 2017. Book of Abstracts (Vinnitsa, 2017) p. 68. (Ukr)

21. L. Gu, W. Zhenbin, C. Shuiping. Application of constructed wetlands on wastewater treatment for aquaculture ponds. Wuhan University Journal of Natural Sciences 12 (2007) 1131. https://doi.org/10.1007/s11859-007-0116-7

22. A. Healy, M. Cawley. Nutrient processing capacity of a constructed wetland in Western Ireland. Journal of Environmental Quality 31 (2002) 1739. https://doi.org/10.2134/jeq2002.1739

23. D.A. Yammer. Designing constructed wetlands system to treat agricultural nonpointsource pollution. Ecol. Eng. 1 (1992) 49. https://doi.org/10.1016/0925-8574(92)90025-W

24. J. Vymazal. Constructed Wetlands for Wastewater Treatment. Water 2 (2010) 530. https://doi.org/10.3390/w2030530

25. V.D. Romanenko et al. Natural and Artificial Bioplato. Fundamental and Applied Aspects (Kyiv: Naukova Dumka, 2012) 112 p. (Ukr) http://www.nas.gov.ua/UA/Book/Pages/default.aspx?BookID=0000013845

26. V.D. Romanenko, Yu.G. Krot. Biotechnological direction of research at the Institute of Hydrobiology of the NAS of Ukraine. Gidrobiologicheskiy Zhurnal 51(2) (2015) 23. (Rus) http://hydrobiolog.com.ua/2015/pdf_2015_2/rom_krot_3.pdf

27. A.N. Mikheev, O.V. Lapan, S.M. Madzhd. Development of a new method of garment filtering purification of water objects of chrome (VI). Journal of Water Chemistry and Technology 3 (2018) 157. https://doi.org/10.3103/S1063455X18030074

28. O.V. Lapan, O.M. Mikheev, S.M. Madzhd. Development of a new method of rhizofiltration purification of water objects of Zn(I) and Cd(II). Journal of Water Chemistry and Technology 41 (2019) 52. https://doi.org/10.3103/S1063455X19010089

29. O.M. Mikhyeyev et al. Use of a new type of bioplato to purify water from radionuclide and chemical contamination. In: XIV Annual. Scientific Conf. of the Institute for Nuclear Research NAS of Ukraine. Book of Abstracts (Kyiv, 2017) p. 240. (Ukr) http://www.kinr.kiev.ua/kinr-2017/Book_of_Abstracts_2017.pdf

30. O.M. Mikhyeyev, O.V. Lapan. Purification of the water objects from heavy metal by means of a bioplato type hydrophytic construction. In: XII All-Ukrainian Research-Practice Conf. "Biotechnology of the XXI Century" (Kyiv, 2018) p. 114. (Ukr)

31. Yu.A. Kutlahmedov, V.P. Petrusenko. Analysis of the effectiveness of countermeasures for the protection of ecosystems on slope landscapes by the method of chamber models. Visnyk Natsionalnoho Aviatsiynoho Universytetu 4 (2006) 163. (Ukr) https://doi.org/10.18372/2306-1472.30.1404