Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 4, pages 411-419.
Section: Radiobiology and Radioecology.
Received: 30.08.2019; Accepted: 04.12.2019; Published online: 12.03.2020.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2019.04.411

Dynamics of the 137Cs excretion from Prussian carp (Carassius gibelio) at different water temperatures

O. V. Kashparova1,2,*, H. C. Teien2, S. E. Levchuk1, V. S. Pavlenko1, B. Salbu2, V. O. Kashparov1,2

1 Ukrainian Institute of Agricultural Radiology of the National University of Environment and Life Sciences of Ukraine, Kyiv, Ukraine
2 Center for Environmental Radioactivity, Norwegian University of Life Sciences, As, Norway


*Corresponding author. E-mail address: elena.kashparova@gmail.com

Abstract: Freshwater fish such as Prussian carp (Carassius gibelio) don’t need a feed at a water temperature below 10 °Ñ. To study the rate constants of 137Cs excretion from the body of Prussian carp at different water temperatures (5 and 22 °Ñ) and different feeding, the series of aquarium experiments were conducted. The half-life time of 137Cs activity excretion from fish in the water (T = 5 °Ñ) without feeding (T1/2= 433 ± 162 days) was 5.6 times higher compared to the rate constants for water temperature 22 °Ñ (T1/2 = 78 ± 4 days) with different types of feeding. The temporal decline of 137Cs activity (Bq) in fish was the same for different feeds, but the activity concentration of 137Cs (Bq·kg-1) in fish differed up to 1.8 times (0.0089 ± 0.0005 day-1 and 0.016 ± 0.002 day-1) due to different weight gains.

Keywords: 137Cs, radioecology, Carassius gibelio, the Chornobyl accident, water ecosystems, radioactive contamination, permissible levels, concentration factor, the rate constant of uptake, rate constant of excretion.

References:

1. Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience. Report of the Chernobyl Forum Expert Group "Environment" (Vienna, IAEA, 2006) 166 p. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf

2. Environmental Protection: the Concept and Use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP 38 4-6 (2008) 242 p. https://www.icrp.org/publication.asp?id=ICRP%20Publication%20108

3. D.I. Gudkov et al. Dynamics of the Content and Distribution of the Main Dose Forming Radionuclides in Fishes of the Exclusion Zone of the Chernobyl NPS. Hydrobiological Journal 44(5) (2008) 87. https://doi.org/10.1615/HydrobJ.v44.i5.100

4. A.I. Kryshev, T.G. Sazykina, Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. Journal of Environmental Radioactivity 108 (2012) 9. https://doi.org/10.1016/j.jenvrad.2011.07.013

5. A.E. Kaglyan et al. Radionuclides in the indigenous fish species of the Chernobyl Exclusion Zone. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(3) (2012) 306. (Rus) http://jnpae.kinr.kiev.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf

6. E. Kashparova et al. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone. Journal of Environmental Radioactivity 211 (2018) 10573. https://doi.org/10.1016/j.jenvrad.2018.05.015

7. V. Kashparov et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth System Science Data (ESSD) 10 (2018) 339. https://doi.org/10.5194/essd-10-339-2018

8. V. Kashparov et al. Environmental behaviour of radioactive particles from Chernobyl. Journal of Environmental Radioactivity 208-209 (2019) 1. https://doi.org/10.1016/j.jenvrad.2019.106025

9. B. Salbu. Challenges associated with the behaviour of radioactive particles in the environment. Journal of Environmental Radioactivity 186 (2018) 101 https://doi.org/10.1016/j.jenvrad.2017.09.001

10. J.T. Smith, M.J. Bowes, F.H. Denison. Modelling the dispersion of radionuclides following short duration releases to rivers. Part 1. Water and sediment. Sci. Total Environ. 368 (2006) 485. https://doi.org/10.1016/j.scitotenv.2006.03.010

11. I.I. Kryshev, T.G. Sazykina. Assessment of radiation doses to aquatic organisms in the Chernobyl contaminated area. Journal of Environmental Radioactivity 28 (1995) 91. https://doi.org/10.1016/0265-931X(94)00043-V

12. T. Wada et al. Radiological impact of the nuclear power plant accident on freshwater fish in Fukushima: An overview of monitoring results. Journal of Environmental Radioactivity 151 (2016) 144. https://doi.org/10.1016/j.jenvrad.2015.09.017

13. T. Wada. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity 204 (2019) 132. https://doi.org/10.1016/j.jenvrad.2019.04.006

14. J.E. Pinder. Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems. Journal of Environmental Radioactivity 100 (2009) 456. https://doi.org/10.1016/j.jenvrad.2009.03.004

15. A.I. Kryshev. Model reconstruction of 90Sr concentrations in fish from 16 Ural lakes contaminated by the Kyshtym accident of 1957. Journal of Environmental Radioactivity 64 (2003) 67. https://doi.org/10.1016/S0265-931X(02)00059-0

16. Yu.V. Khomutinin, V.A. Kashparov, A.V. Kuzmenko. Dependence of 137Cs and 90Sr accumulation rates by fish on the potassium and calcium content in freshwater water. Radiation Biology. Radioecology 51 (3) (2011) 374. (Rus)

17. M. Balonov et al. Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident. Journal of Radiological Protection 38 (2018) 854. https://doi.org/10.1088/1361-6498/aabe34

18. J.T. Smith et al. Uptake and elimination of radiocaesium in fish and the "size effect". Journal of Environmental Radioactivity 62 (2002) 145. https://doi.org/10.1016/S0265-931X(01)00157-6

19. M.J. Chowdhury, R. Blust. A mechanistic model for the uptake of waterborne strontium in the common carp (Cyprinus carpio L.). Environ. Sci. Technol. 35 (2001) 669. https://doi.org/10.1021/es000142t

20. J.T. Smith. Modelling the dispersion of radionuclides following short duration releases to rivers. Part 2. Uptake by fish. Science of the Total Environment 368 (2006) 502. https://doi.org/10.1016/j.scitotenv.2006.03.011

21. A.I. Kryshev, I.N. Ryabov Calculation model of fish contamination by 137Cs and its application for Lake Kozhanovsky (Bryansk region). Radiation Biology. Radioecology 45(3) (2005) 338. (Rus)

22. N.A. Nenashev et al. Accumulation of 137Cs by the ichthyofauna of various reservoirs of PGREZ. Ecosystems and radiation: Aspects of existence and development. Sbornik Nauchnykh Trudov dedicated to the 25th anniversary of the Polessky State Radiation and Ecological Reserve. Ed. by Yu. I. Bondar (Minsk: Belarusian Branch of the Russian-Belarusian Information Center, Republican Scientific Research Unitary Enterprise "Institute of Radiology", 2013) 353 p. (Rus)

23. D.I. Gudkov et al. Current levels and dynamics of radionuclide contamination of the components of aquatic ecosystems in the Chernobyl exclusion zone. Naukovi Zapysky of Ternopil National Pedagogical University. Ser. Biol., Hydroecology 3-4 (64) (2015) 149. (Rus) http://catalog.library.tnpu.edu.ua/naukovi_zapusku/biolog/2015/Biol_3-4_15.pdf

24. T. Yankovich et al. Establishing a database of radionuclide transfer parameters for freshwater wildlife. Journal of Environmental Radioactivity 126 (2013) 299. https://doi.org/10.1016/j.jenvrad.2012.07.014

25. L. Konovalenko et al. Evaluation of factors influencing accumulation of stable Sr and Cs in lake and coastal fish. Journal of Environmental Radioactivity 160 (2016) 64. https://doi.org/10.1016/j.jenvrad.2016.04.022

26. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA-TECDOC-1616 (Vienna, IAEA, 2009) 622 p. https://www-pub.iaea.org/MTCD/publications/PDF/te_1616_web.pdf

27. S. Fesenko et al. Radionuclide transfer to freshwater biota species: review of Russian language studies. Journal of Environmental Radioactivity 102 (2011) 8. https://doi.org/10.1016/j.jenvrad.2010.09.006

28. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. IAEA-TRS-472 (Vienna, IAEA, 2010) 194 p. https://www-pub.iaea.org/MTCD/publications/PDF/trs472_web.pdf

29. N.A. Beresford et al. A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and cesium. Science of the Total Environment 463-464 (2013) 284. https://doi.org/10.1016/j.scitotenv.2013.06.013

30. G.D. Lebedeva. The effect of various salt composition of water on the accumulation and elimination of cesium-137 by freshwater fish. Radiobiology 6(4) (1966) 556. (Rus)

31. A.I. Kryshev. 90Sr in fish: A review of data and possible model approach. Science of the Total Environment 370 (2006) 182. https://doi.org/10.1016/j.scitotenv.2006.06.003

32. Patent No. 128443. The method for purification of crucian carp (Carassius gibelio Bloch) from 137Cs radionuclide to hygienic radiation-safe levels / O.E. Kaglyan et al. Publ. 09/25/2018, bull. No. 18. (UKr)

33. Yu.V. Movchan, A.I. Smirnov. Fauna of Ukraine. Fishes. Vol. 2. Issue 2 (Kyiv: Naukova Dumka, 1983) 360 p. (Ukr)

34. Yu.V. Khomutinin et al. The forecast of the dynamics and risk of exceeding the permissible content of 137Cs and 90Sr in the fish of the Kyiv reservoir at the late phase of the Chernobyl accident. Radiation Biology. Radioecology 53(4) (2013) 411. (Rus)

35. O.L. Zarubin et al. Accumulation of 137Cs in a pike perch (Lucioperca Lucioperca L.). Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(2) (2012) 175. (Rus) http://jnpae.kinr.kiev.ua/13.2/Articles_PDF/jnpae-2012-13-0175-Zarubin.pdf