Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 1, pages 79-85.
Section: Radiobiology and Radioecology.
Received: 10.07.2019; Accepted: 04.12.2019; Published online: 14.05.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2020.01.079

Physicochemical regulation of peroxidation processes in rats’ blood after incorporation of radionuclides with different tropism: 131² and 90Sr + 90Y

Yu. P. Grynevych1,*, À. ². Lypska1, ². P. Drozd1, N. O. Druzhyna2, S. V. Teletska1, L. I. Makovetska2

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 R. Å. Kavetsky Institute of Experimental Pathology and Oncology, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: radiobiology@kinr.kiev.ua

Abstract: The dynamics of free radical processes in the blood of mature male Wistar rats were studied by chemiluminescence after a single injection of 131I (114.8 kBq) and 90Sr + 90Y (113.9 kBq). Changes in the course of the physicochemical regulation of the prooxidant-oxidant ratio in the early stages of the influence of these radionuclides, which were manifested in the imbalance between the level of intensity of the formation of free radicals and the efficiency of their elimination by the antioxidant system, were revealed. The differences in the dynamics of free radical processes in the blood of rats are obviously due to the nuclear-physical and biological characteristics of radionuclides of various tropics.

Keywords: ñhemiluminescence, free radical processes, 131I, 90Sr + 90Y, blood, Wistar line male rats.

References:

1. J.M. Jutteridge, B. Hallwell. Free radicals and antioxidants in the year 2000. A historical look to future. Ann. N. Y. Acad. Sci. 899 (2000) 136. https://doi.org/10.1111/j.1749-6632.2000.tb06182.x

2. B.I. Polivoda, V.V. Koniev, G.A. Popov. Biophysical Aspects of Biomembranes Radiation Damage (Moskva: Energoatomizdat, 1990) 160 p. (Rus)

3. J. Moskovitz, M.B. Vim, P.B. Clock. Free radicals and diseases. Archive Biochem. Biophys. 2(397) (2002) 354. https://doi.org/10.1006/abbi.2001.2692

4. A.M. Lyaginskaya, V.A. Osipov. Short-lived isotopes of iodine (131-135I) in a radiation accident: features of the formation and distribution of absorbed doses in the thyroid gland, biological effects. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost' 2 (2005) 18 (Rus).

5. C.A. Fitch, Y. Song, C.W. Levenson. Developmental regulation of hepatic ceruloplasmin mRNK and serum activity. Proc. of the Soc. for Experimental Biology and Medicine 221 (1999) 27. https://doi.org/10.3181/00379727-221-44380

6. A.P. Bozhko, I.V. Gorodetskaia, A.P. Solodkov. Restriction of stress-induced activation of lipid peroxidation by small doses of thyroid hormones. Bull. Exp. Biol. Med. 109 (1990) 539. https://doi.org/10.1007/BF00841424

7. O.F. Mysnyk. Thyroid communication characteristics, hemostasis, and lipid peroxidation. ScienceRise. Biolohichni Nauky 11(6) (2015) 51. (Ukr) https://doi.org/10.15587/2313-8416.2015.54811

8. N.K. Rodionova et al. The peculiarities of the changes in medullar hematopoetic system of animals exposed to internal irradiation with 90Sr. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 2(10) (2003) 117. (Ukr) http://jnpae.kinr.kiev.ua/04.2/Articles_PDF/jnpae-2003-04-2-117.pdf

9. Ya.I. Serkiz, N.A. Druzhina, A.P. Khrienko. Chemiluminescence of Blood in Radiation Impact (Kyiv: Naukova Dumka, 1989) 176 p. (Rus.)

10. L.I. Makovetska, Yu.P. Grinevich, I.P. Drozd. Lipid peroxidation in the rat blood under the single alimentary incorporation of 90Sr + 90Y. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 3(25) (2008) 80. (Ukr) http://jnpae.kinr.kiev.ua/25(3)/Articles_PDF/jnpae-2008-3(25)-0080-Makovetska.pdf

11. E.N. Kukhtina, V.V. Naumov, N.G. Khrapova. Features of the chemiluminescent method for determining the activity of natural antioxidants. Theoretical and methodological foundations of biochemiluminescence. In: Proc. of the Symp. Biochemiluminescence in Medicine and Agriculture (Moskva: Nauka, 1986) p. 56. (Rus)

12. Yu.P. Grynevych et al. Integral assessment of oxidative metabolism during long-term domestic revenue 131I in rats. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 16(3) (2015) 273. (Ukr) https://doi.org/10.15407/jnpae2015.03.273

13. Yu.P. Grynevych et al. Lipid peroxidation in rat blood following a single administration of different active 131I. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15(4) (2014) 353. (Ukr) http://jnpae.kinr.kiev.ua/15.4/Articles_PDF/jnpae-2014-15-0353-Grynevych.pdf

14. A.I. Lypska, I.P. Drozd. The formation of radiation doses with the oral intake of strontium in rats. Problemy Chornobyl's'koyi Zony Vidchuzhennya 8 (2006) 169. (Ukr) http://www.chornobyl.net/wp-content/uploads/2019/02/Problems-ChEZ-8_2005.pdf

15. I.P. Drozd, A.I. Lipskaya. Irradiation of Laboratory Rats. Dose Formation and Body Response (Deutschland, LAP LAMBERT Academic Publishing, 2014) 217 p. (Rus)

16. V.A. Bazhenov et al. Harmful Chemicals. Radioactive Substances (Leningrad: Chimiya, 1990) 464 p. (Rus)