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ISOSCALAR DIPOLE RESPONSE OF HEAVY NUCLEI
IN LOW-ENERGY REGION WITHIN KINETIC MODEL

The isoscalar dipole response of heavy spherical nuclei in the low-energy region is studied by using a semiclassical
model, based on the solution of the linearized Vlasov kinetic equation for finite Fermi systems. In this translation-
invariant model, the excitations of the center of mass motion are exactly separated from the internal ones. The isoscalar
dipole strength function displays three resonance structures in the energy region up to 15 MeV. Calculations of the
velocity fields associated with resonance structures at centroid energies show the vortex (toroidal) nature of two overly-
ing resonances. The main toroidal resonance gives a qualitative description of the low-energy isoscalar dipole reso-
nance, which is observed in heavy spherical nuclei. The origin of the lowest isoscalar dipole resonance structure is ap-
parently related to dipole single-particle excitations. Its centroid energy is close to the minimum energy of the dipole
single-particle spectrum, and taking into account the residual interaction leads only to an insignificant shift of the cen-
troid energy towards lower energy. However, the inclusion of residual interaction noticeably enhances the velocity field

associated with the lowest resonance, which indicates collective effects in this resonance structure.
Keywords: kinetic model, low-energy resonance structures, velocity field, toroidal resonances.

1. Introduction

The nuclear isoscalar dipole response reveals the
low-energy resonance [1 - 4]. Theoretical studies of
low-energy isoscalar dipole resonance had been car-
ried out both within quantum approaches [5 - 15] and
using semiclassical ones [16 - 20]. They showed that
this resonance has a substantial vortex (toroidal) char-
acter. However, quantum calculations of the isoscalar
dipole response show several toroidal resonance
structures in the low-energy region (below 15 MeV)
[5, 8, 10, 11]. The main resonance is interpreted as a
nuclear toroidal mode. The semiclassical dipole
strength function also has several resonance structures
in the low-energy region [17, 20]. It is of interest to
study the nature of these resonance structures in order
to compare them with quantum studies.

In this paper, the velocity fields associated with
low-energy collective isoscalar dipole excitations are
studied within the translation-invariant kinetic model
of small oscillations of finite Fermi systems [21].
This article is a continuation of [20], in which atten-
tion was focused on studying the nature of the main
nuclear isoscalar dipole resonances (toroidal and
compression modes). In Section 2, we briefly recall
the formalism of the kinetic model of collective di-
pole excitations in nuclei. The internal response
function and the velocity field associated with the
isoscalar dipole excitations are considered. In Sec-
tion 3, the low-energy resonance structures of the
isoscalar dipole response function are discussed, and
the results of numerical calculations of the velocity
fields associated with the low-energy resonance
structures of the dipole strength function are shown.

2. Formalism

The translation-invariant kinetic model of small
oscillations of finite Fermi systems based on the
direct solution of the Vlasov equation for a Fermi
system with a moving surface is used to study the
collective isoscalar dipole excitations of heavy nu-
clei [17, 19, 20]. In this model, a nucleus is treated
as a gas of interacting fermions confined to a spheri-
cal cavity with a moving surface. Within our Kkinetic
model, we can find the explicit expression for the
fluctuation of the phase-space distribution function
related to the collective isoscalar dipole excitations.
By using this function, we can calculate the response
function [19] as well as the local dynamical quanti-
ties, in particular, the velocity field [20].

Isoscalar dipole excitations in finite Fermi sys-
tems are an effect of the second order for the dipole
moment (in the first order, they reduce to the center-
of-mass motion). So, we consider the collective
isoscalar dipole modes excited by a weak external
field of the kind

V(F, 1) = B3(1)Q™ ()Y, (6, ), )

where Q®(r) = r® is the second-order dipole mo-
ment, 3(t) is the Dirac delta-function in time, and 3
(B = consta,, where o << 1) is a parameter that de-
scribes the external field strength. Within the kinetic
model, assuming a simplified residual interaction of
separable form

V(r, F) =12 rr Yy, (6,9)Y5,(0,4) ()
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the explicit solution for the fluctuation of the phase-
space distribution function can be found. Since the
external field (1) can also excite the center of mass,
the problem arises of extracting spurious strength
from the response function. Our translation-invariant
model allows for a clear way to evaluating the in-
trinsic response function associated with the field
(1). By looking at the response of the center of mass
induced by the external field (1), we can get [20]

3 AR4
8me.s

RI(s)= =

@)

where R is the equilibrium radius of the system,
s=wR /v, is a convenient dimensionless frequency

(vg is the Fermi velocity) and e is the Fermi ener-

gy. Since this response function has no poles for
s # 0, it does not give spurious dissipation at positive
s. Then the internal response function that is related
to the collective isoscalar dipole excitations can be
determined as

Rintr (S) =

§33(S) - |ic.m.(s)’ (4)

R?k(s)_ oA 1 Z ZJ dxx?s, (x)QnN(X)QnN(X)

n=—o0 N=%1

where the dimensionless single-particle angular !

momentum X is x=«/l—(l / p-R)? and the dimen-

sionless dipole single-particle eigenfrequencies
S, (X) are defined as

S (X) = N56(X) + Ns, (X) )
with
arcsin(x)

() ==, 5,(0=
X

which are the dimensionless frequencies of radial

and angular motion for a particle with energy e. and

dimensionless angular momentum x. The quantity ¢

is a vanishingly small parameter that determines the

where R,,(s) is the collective dipole response func-
tion and R, (s)=R’R®(s). An essential property
of intrinsic response function (4) is that its limit for
s — 0 is finite, so it has no pole in s=0 (v=0).In
our model, it is convenient to write the function
R,;(s) as

§33(S) = Ry5(8) + S5(8).

Here, the function Ry (s) is the collective fixed-

surface response function, while S,,(s) represents

the moving-surface contribution.
With the simple interaction (2) the function

R,;(s) can be evaluated explicitly as [19]

(4a)

R
S R S)+K . 5
R35(S) = R3;(s) TR () (%)
Here, the  zero-order  response  functions

R?k(s), (J,k=13), are analogous to the single-

particle response functions of the quantum theory
and are given explicitly by [17]

(1. k=13), (6)

S+ie—s,(X)

QX (x) are the classical limit of the quantum-

mechanical radial matrix elements of the dipole
operators and are given by
1
Qu()=()"R 8)
§ nN (X)
2, (0 = 3R°Q}, (0 1+ SN 1 2l o
nN nN 3 nN( ) nN (X) "

The response functions (6) involve an infinite sum
over n, however, in practice, it is sufficient to include
only a few terms around n =0 in order to fulfill the
energy-weighted sum rule with good accuracy.

The moving-surface contribution S,;(s) to the
internal response function (3) can be evaluated

integration path at poles. The Fourier coefficients | explicitly as

1 [Xa(s) Xs(o)KlR 1(5)]
1-16,R(8) [=1 (L —1,RE ()] + . [ (8) — %1 (O))*

where the functions y;(s), (k =1,3), and y, (s) describe the dynamical surface effects and are defined as in
Ref. [17]:

Sy (s) = (10)

9A (5)"Qw (x) _
10(s) = —— Z:‘c NZJ dxx’s,, (x)m (k=13), (11)
Xl(S) = — e (S + |8) Z_OO NZHJ. rsm\‘(x) (12)
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The poles of the internal response function (4) de-
termine the frequencies of collective isoscalar dipole

modes. Neglecting residual interaction (i, =0) in

Egs. (5), (10), we obtain the internal response func-
tion (4) in the zeroth-order approximation. Due to a
self-consistent coupling between the motion of nu-
cleons and the moving surface, the collective isosca-
lar dipole excitations originate in our kinetic model
already in the zeroth-order approximation.

To get the information about the origin of collec-
tive isoscalar dipole excitations, it is interesting to
consider the velocity field associated with the dipole
collective motion. This local dynamic quantity de-
scribes the spatial distribution of the average nucle-
on velocity during collective excitation and provides
information on the nature of excitation. In our kinet-
ic model, the time Fourier-transform of the velocity
field is determined as

u(r, ) =

, P, ), (13)
where dn(F, p,w) are the (Fourier transformed in

time) fluctuations of the phase-space particle distri-
bution induced by a weak external field (1), p, is

the nuclear equilibrium density and m is the nucleon

mass. Choosing the Z axis in the direction of the |

external field, we will consider the velocity field in
the meridian plane XZ that usually exploited in the
RPA calculations [5, 22]. In this representation, the
radius-vector of the particle is F=(x,y=0,2z) or
r=(r, 6, o=0) in the spherical coordinates and the
velocity field (13) can be written as

u(r,0,9=0,®) =u,.r,6,®E, +u,(r, 6, w)E,, (14)

where u,(r,0,®) and u,(r,6,0) are the projections
of the velocity field vector into the X and Z axes,
respectively, and € ,€ are unit vectors directed

along these axes. The expressions for the functions
u(r,6,0) and u,(r,6,®) can be written as, see
Ref. [20],

u(r,0,m) = \/§Y21(e!0)u12(r'(‘0)' (15)
u, (r,6,0) =Y, (6,0)u;4(r, ®) — \/%Yzo(ea 0)u,, (r, ®).
(16)

Here Y,,(6,0) are the spherical harmonics, while the

radial functions u,,(r,m) and u,(r,o) are defined
as

u,, (r, m)_—u\Fn——jdejdnz i[5 (r, e, 1, ) — 1, (r,e,1, )]+

N I
+ —————[80(r, ¢, 1, ®)+6A(r,el, : 17
5 p(r,e,l)r[ n ) + 3y ®)1} (17)

Uy (T, w)——l\/:n——IdedeIZ (il (r.e, 1, 0) -0y (r e, 1, )]+

I
N——[8A (r, e, |, ®)+ A, (r,e,l, , 18
p(r,e,l)r[ n ) + 3y ( )1} (18)
where e is the particle energy, | is the magnitude of | velocity field vector (15), (16) is determined by the
its angular  momentum  and p(r,e, )= quadrupole and monopole spherical harmonics. In-
7 . . ) deed, using the relation € =€ sin0+§€, cos6O, where

2me—(1/r)" is the magnitude of the particle

radial momentum. The fluctuations of the phase-
space particle distribution functions &y (r,e, |, ®)
are the solutions of the linearized Vlasov kinetic
equation for a finite system with a moving surface.
The explicit expressions of these functions are given
in Ref. [20]. It should be noted that the dipole exter-
nal field (1) results in the dipole radial (and tangen-
tial) component of the velocity field (13), while the
angular dependence of the x and z projections of the

ISSN 1818-331X AJAEPHA ®I3UKA TA EHEPTETUKA 2020 T.21 Ne2

€ is a unit vector directed along the radius-vector,

and (15), (16) we can get that U(r,0, ®)-€, =
=Y,,(O)u(r, ).

Our semiclassical projections (15) and (16) of the
velocity field vector are similar to the quantum ones,
see e.g., [22]. They have the same angular depend-
ence as the corresponding quantum projections,
while the radial form factors are calculated using the
RPA-type equations of motion.
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3. Low-energy resonances

In Fig. 1 we display the low-energy part (up to
20 MeV) of the isoscalar dipole strength function
(E =ho)

1 .
S(E):_;ImRintr(E)' (19)
12+
A=208
10 - - - - -0-order approx.
% — with res. inter.
S s
mE -
e 1
“70 6 1
—
war T
n
2+ i
0 T

15 20

E, MeV

Fig. 1. Isoscalar dipole strength function in the low-
energy region taking into account the residual interaction
between nucleons (solid curve) and in the zero-order
approximation (dashed curve). The system contains
A =208 nucleons.

We study the isoscalar dipole response of a sample
“nucleus” of A =208 nucleons. Dipole response func-
tions calculated for other values of A, corresponding
to other medium-heavy spherical nuclei, are qualita-
tively similar to the case shown in Fig. 1. The dashed
curve is obtained from the internal response function
(4) in the zero-order approximation (k, =0), while
the solid curve shows the internal response function
(4) taking into account the residual interaction be-
tween nucleons. It can be seen from Fig. 1 that the
strength function has three resonance structures al-
ready in the zero-order approximation. The inclusion
of the residual interaction leads to an insignificant
shift of the resonance structures towards low energies.
The strength parameter k, of the isoscalar dipole
interaction (2) can be related to nuclear incompressi-
bility K, by using the inverse energy-weighted sum
rule [23, 17]. We determine the value of the mono-
pole incompressibility K;*" =160 MeV by compari-

son with the giant monopole-resonance data in 2®Pb
within our kinetic model [19]. Then, by assuming

K,=Ki", we get the dipole strength parameter
i, =—7.5-10"° MeV/fm?. The numerical calculations
were carried out using standard values of nuclear
parameters: r, = 1.25 fm, e, = 30.94 MeV, and
m = 936 MeV.

The resonances of the dipole strength function
(19) are determined by the poles of the intrinsic di-
pole response function (4), which are given by the
solutions of the equation [19]

[ (- 1R ()] + 1, [, (5) = 17 (01 =0.. (20)

In this equation, the functions y,(s) andy>(s),

which describe dynamic surface effects, see Egs.
(11), (12), and the single-particle response function

RY(s), see Eq. (6), are calculated as integrals over

classical trajectories determined by dipole eigenfre-
guencies (7). In our model, the dynamic (moving)
surface provides translational invariance in the same
way as in the liquid drop model (LDM). However,
our semiclassical approach is based on dynamics in
phase-space and, thus, takes into account the defor-
mation of the Fermi surface at nuclear excitation.
The absence of the low-energy isoscalar dipole
modes in the LDM gives reason to assume that, in
our model, the formation of the low-energy reso-
nances is essentially related to the dynamic defor-
mation of the Fermi surface.

We calculate the velocity field (14) associated
with the resonance structures of the dipole strength
function at the centroid energies. It can be found that
in the low-energy region only two branches of the
dipole eigenfrequencies (7) at n = 0, N = 1 and
n =1, N = -1 contribute to the dipole response func-
tion (4) as well as to the dipole velocity field (14).
Thus, the nature of the dipole velocity field is asso-
ciated with the properties of the dipole eigenfre-
guencies in the low-energy region. In particular, the
branch s, (x) is associated with a purely angular

motion of particles and therefore can be involved in
the formation of vortex motion.

In Fig. 2 the velocity fields for the lowest reso-
nance structure are shown in the zero-order approx-
imation at the centroid energy 7.2 MeV (@) and with
regard for the residual interaction at the centroid
energy 7.1 MeV (b). It can be seen that the velocity
fields for the lowest resonance structure do not show
vortex motion. Its centroid energy is close to the
minimum energy of the dipole single-particle spec-
trum (7) determined bys,;, =S, (x=1)=1. Given
that s=w R/v., we obtain E_, =% Vv./R and,

using the parameters of our model, we can find that
E... ®7.2 MeV. Taking into account the residual

interaction leads to an insignificant shift of the cen-
troid energy to lower energy, see Fig. 1 (solid
curve). Thus, this resonance structure is probably
associated with single-particle dipole excitations.
However, taking into account the residual interaction
leads to a visible strengthening of the velocity field,
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Fig. 2. The velocity fields in the XZ plane associated with the lowest resonance structure, see Fig. 1, in the zero-order appro-
ximation at the centroid energy of 7.2 MeV (@) and taking into account the residual interaction between the nucleons at the
centroid energy of 7.1 MeV (b). The system contains A = 208 nucleons.

see Fig. 2, b. This behavior of the velocity field
shows collective effects in the lowest resonance
structure. This collectivity can be induced by the
dynamic deformation of the Fermi surface. To clari-
fy this point, it is necessary to study the properties of
the momentum flux tensor associated with this reso-
nance. Such a study can be carried out within our
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semiclassical approach; however, this will be left for
future work.

On the other hand, the velocity fields associated
with the overlying resonances of the strength func-
tion have the vortex (toroidal) character already in
the zero-order approximation, see Figs. 3 and 4.
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Fig. 3. Velocity fields in the XZ-plane associated with the second resonance structure, see Fig.1l, in the zero-order
approximation at the centroid energy 10.2 MeV (a) and taking into account the residual interaction between nucleons at the
centroid energy 10.2 MeV (b). The system contains A = 208 nucleons.
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Fig. 4. Velocity fields in the XZ-plane associated the third resonance structure, see Fig. 1, in the zero-order approxima-
tion at the centroid energy 12 MeV (a) and taking into account the residual interaction between nucleons at the centroid

energy 11.5 MeV (b). The system contains A = 208 nucleons.

In Fig. 3, the results of numerical calculations of
the velocity fields associated with the second reso-
nance of the strength function are shown in the zero-
order approximation (a) and taking into account the
residual interaction (b). It can be seen from Fig. 3 that
the inclusion of the residual interaction leads to
strengthening the vortex motion associated with this
resonance. Fig. 4, a shows the velocity field for the
main toroidal resonance in the zero-order approxima-
tion at the centroid energy 12 MeV, while Fig. 4, b
displays this velocity field taking into account the
residual interaction at the centroid energy 11.5 MeV.
This resonance reproduces the nuclear low-energy
resonance observed in heavy nuclei [20].

4. Conclusions

The velocity fields associated with the low-
energy resonance structures of the isoscalar dipole
strength function have been studied within the kinet-
ic model. In this model, taking into account the dy-
namical-surface degree of freedom, it is possible to
obtain an exact treatment of the center of mass mo-
tion. It is found that our semiclassical model predicts
two toroidal resonances in the energy region below
15 MeV. The main toroidal resonance (the centroid
energy 11.5 MeV), see Fig. 4, b, reproduces the
nuclear low-energy resonance. The neighboring

134

resonance in the region of lower energies (the cen-
troid energy 10.2 MeV), see Fig. 3, b, also has a
vortex (toroidal) character. The results of our semi-
classical model are in qualitative agreement with the
previous results of the relevant random-phase-
approximation (RPA) calculations [5, 10, 11]. The
quantitative comparison of our semiclassical model
and the quantum approaches is rather difficult due to
the different nature of calculations. The centroid
energy of the lowest resonance structure is close to
the minimum energy of the dipole single-particle
spectrum (E.;,, =7 v /R). The velocity field for

this resonance structure does not show vortex mo-
tion, however, taking into account the residual inter-
action leads to collectivity in this resonance, see
Fig. 2, b, which may be due to the dynamic defor-
mation of the Fermi surface.

Our semiclassical approach makes it possible to
obtain additional information on the nature of collec-
tive isoscalar dipole excitations in heavy nuclei. In
particular, it would be interesting to study the nature
of the momentum flux associated with collective
isoscalar dipole excitations. This study could clearly
show the effect of the dynamic deformation of the
Fermi surface on the formation of nuclear low-
energy resonance.
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I30CKAJIIPHUM JIATTIOJBHUM BIAT'YK BAKKHX SIEP
B OBJIACTI HU3bKUX EHEPTTH Y KIHETUYHIA MOJIEJII

[30cKanspHUil QUIONBHUHN BIATYK BOKKUX COEPUYHMX S1ep B 00JacTi HU3bKUX €HEPTriii BUBYAETHCS B HAIIBKIACHY-
Hill Mozei, 110 CIHMPAaEThCs Ha SIBHUM PO3B’S30K JIIHEAPU30BAHOTO KIHETHYHOTO PiBHSAHHA BnacoBa misi CKiHYEHHHX
¢depmi-cucrem. Y mid TpaHCIANIHHO-IHBapiaHTHIM MOJEN pyX LEHTPa Mac TOYHO BIAMUIAETHCS BiJ BHYTPIIIHIX
30y/pKeHb. [30cKanspHa AMIOiIbHA CHIoBa (YHKISI Mae TP PE30HAHCHI CTPYKTYypH B obusacti eHepriid no 15 MeB.
Po3paxyHKku MmosiiB MIBUIKOCTEH, MOB'I3aHIX 3 PE30HAHCHUMH CTPYKTYPaMH NPU €HEPrisxX LEHTPOina, BUSBISIOTH BH-
XpOBY (TOpOifanbHy) IPUPOY IBOX BEPXHIX pe3oHaHCiB. OCHOBHMI TOPOINAIbHUN PE30HAHC A€ SIKICHUH OTHC HU3b-
KOEGHEPreTUYHOr0 130CKaIIPHOTO TUIIOJIBHOTO PE30HAHCY, L0 CIIOCTEPIraeThCs Y BaXKKHX cepuuHHX sapax. [loxo-
JUKEHHSI HAHHMKYOT 130CKJISIPHOT IMTIOJILHOT PE30HAHCHOT CTPYKTYPH, OYEBUJIHO, ITOB’S3aHE 3 JUIOJLHUMH OJTHOYAC-
THHKOBUMH 30y/KeHHAMHU. 1i eHeprisi LeHTpoina GiM3bKa 10 MiHIMaJbHOI €Heprii JMMOJBHOrO OJHOYACTMHKOBOIO
CIIEKTpa, 1 BpaxXyBaHHS 3aJIUIIIKOBOI B3aEMO/I1 MTPU3BOIHT JIUIIE O HE3HAYHOT'O 3CyBY €HEPTii IeHTpOoina B OiK HIDKYOT
eHeprii. [IpoTe BKIIIOUEHHS 3IMITKOBOT B3a€MO/Iii TIOMITHO IMOCHITIOE TIOJIE MBUIKOCTEH, MOB'I3aHe 3 HAMHIKIAM Pe-
30HAHCOM, 1110 BKa3y€ Ha KOJIEKTUBHI e(eKTH B Lill pe30HAHCHIH CTPYKTYPI.

Kniouosi cnosa: xiHeTHdHa MOMENb, PE30HAHCHI CTPYKTYPH B 00JACcTi HHU3BKHX EHEpriil, IOJe IIBHUIKOCTEH,
TOPOiAIbHI PE30HAHCH.
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U30CKAJISIPHBIN I[I/IHOJILHI‘:III‘/II OTKJIMK TSKEJIBIX SITEP
B OBJIACTH HU3KHUX SOHEPI'M B KHHETUYECKOU MO/JIEJIN

W30cKansipHbI AUTONBHBIA OTKIMK TSDKENBIX CHEpHUecKHX saep B 00JacTH HU3KUX JHEPrHid M3y4aercs B IO-
JIyKJIACCUYECKON MOJIENH, KOTOpas ONMPAETCs Ha ABHOE PEIICHUE JIMHEapU30BaHHOTO KUHETUYECKOro ypaBHeHus Bia-
COBa ISl KOHEYHBIX (epMH-CUCTEM. B 3TOH TpaHCIISIIMOHHO-UHBAPHAHTHOW MOJIETH JIBI)KEHHE IIEHTPa Macc TOYHO
OTAENsIeTCS OT BHYTPEHHHX B030ykaeHHH. M30ckamsipHas AWNONbHAs cuioBas (QyHKIUS UMEET TPH pPE30HAHCHBIE
CTPYKTYpHI B 00nacTu sHepruii 1o 15 MaB. Pacders! moseii ckopocTeil, CBI3aHHBIX ¢ Pe30HAHCHBIMU CTPYKTYpPaMH IIPH
SHEPTHUsX IEHTPONAA, IIOKa3bIBAIOT BUXPEBYIO (TOPOUIAIBHYIO) IPHUPOLY ABYX BBIIIEIEKAIINX pe30HaHCOB. OCHOBHON
TOPOUJANIBHBIN PE30HAHC NAeT Ka4ECTBEHHOE ONMCAaHHE HU3KOOHEPTETHUECKOTO U30CKAISIPHOrO TUIOIBHOIO PE30HAH-
ca, KOTOpPBI HaOIIO#aeTcs B TSDKENBIX ceprueckux sapax. [IponcxokaeHne HIDKalImeld N30CKAISPHON AUTOIBHOMN
PE30HAHCHOH CTPYKTYpBI, OYEBHUIHO, CBI3aHO C JTUMOIBHBIMU OJHOYACTUYHBIMH BO30YXIeHUsIMU. Ee 3Heprus nenrpo-
naa Omu3Ka K MUHAMAJIbHOM SHEPTUH JUIOJIBHOTO OJHOYACTHYHOTO CIIEKTPa, M YUIET OCTaTOYHOTO B3aMMOJECHCTBHS
NPUBOJIMT TOJBKO K HE3HAYMTEILHOMY CMEIICHUIO DHEPIHU LEHTpoua K Oonee HU3KOM sHeprun. OHAKO BKIIOUSHHE
OCTaTOYHOTO B3aUMOJEHCTBUsI 3aMETHO YCHJIMBAET IIOJIE€ CKOPOCTEH, CBA3aHHOE C CaMbIM HHU3KHM PE30HAHCOM, UTO
yKa3bIBaeT Ha KOJUIEKTUBHBIE ((PEKTHI B 3TON PE30HAHCHOM CTPYKTYpeE.

Kniouegvie cnosa: xuHeTHuecKass MOJIENb, PE30HAHCHBIE CTPYKTYpHI B 00JaCTH HU3KHX JHEPIUi, Moje CKOPOCTeH,
TOPOUJANIEHBIE PE30HAHCHIL.
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