Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 2, pages 147-151.
Section: Nuclear Physics.
Received: 16.01.2020; Accepted: 09.07.2020; Published online: 3.09.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2020.02.147

Production of beams of multi-charged iron ions 56Fe with energy 0.64 - 7.92 MeV for irradiation of construction materials

V. B. Moskalenko*, O. M. Buhay, V. L. Denysenko

Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

*Corresponding author. E-mail address: moskalenko@ipflab.sumy.ua

Abstract: In the paper, a possibility of multiply charged 56Fe ions beams formation for imitation irradiation of reactor materials with using the IAP NASU accelerator mass spectrometer is considered. There are iron ions of various charge states (up to 56Fe8+) in obtained mass spectra. Despite of the ion current decreases with increasing charge state, multicharged ions can be used to irradiate specimens when larger ion energy is required. It is shown defect formation rate for 56Fe sample irradiated by 56Fe2+ ions with energy 2.52 MeV is 2.7⋅10-3 dpa/s.

Keywords: beam, irradiation, multiply charged ion, iron ions, mass spectrum, dpa/s.

References:

1. V.N. Voyevodin, I.M. Neklyudov. Evolution of the Structure-Phase State and Radiation Resistance of Structural Materials (Kyiv: Naukova dumka, 2006) 376 p. (Rus)

2. D.E. Nelson, R.G. Korteling, W.R. Stott. Carbon-14: Direct Detection at Natural Concentrations. Science 198(4316) (1977) 507. http://doi.org/10.1126/science.198.4316.507

3. J. Chen et al. Development of Accelerator Mass Spectrometry and Its Applications. Rev. Accel. Sci. Technol. 4 (2011) 117. https://doi.org/10.1142/S1793626811000586

4. M. Suter, St. Jacob, H.-A. Synal. AMS of 14C at low energies. Nucl. Instr. Meth. B 123(1-4) (1997) 148. https://doi.org/10.1016/S0168-583X(96)00613-1

5. H.-A. Synal, S. Jacob, M. Suter. The PSI/ETH small radiocarbon dating system. Nucl. Instr. Meth. B 172(1-4) (2000) 1. https://doi.org/10.1016/S0168-583X(00)00376-1

6. A.M. Muller et al. 10Be AMS measurements at low energies (E < 1 MeV). Nucl. Instr. Meth. B 266(10) (2008) 2207. https://doi.org/10.1016/j.nimb.2008.02.067

7. B.J. Hughey et al. Low-energy biomedical GC-AMS system for 14C and 3H detection. Nucl. Instr. Meth. B 172(1-4) (2000) 40. https://doi.org/10.1016/S0168-583X(00)00118-X

8. V.B. Moskalenko et al. State and development prospects of the accelerator mass-spectrometry center of the Institute of Applied Physics of the National Academy of Sciences of Ukraine. Nauka ta Innovatsiyi 10(2) (2014) 8. (Rus) https://doi.org/10.15407/scine10.02.08

9. I.G. Chizhov et al. Method of maintenance of high-voltage devices with SF6 insulation. Patent UA No. 106430. Published on 08.26.2014, Bul. No. 16/2014. (Ukr)

10. J.F. Ziegler. The Stopping and Range of Ions in Matter (SRIM). http://www.srim.org

11. G.S. Was. Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin, Heidelberd: Springer-Verlag, 2007) 827 p. https://doi.org/10.1007/978-3-540-49472-0