Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 3, pages 223-230.
Section: Nuclear Physics.
Received: 14.11.2019; Accepted: 17.11.2020; Published online: 16.12.2020.
PDF Full text (en)
https://doi.org/10.15407/jnpae2020.03.223

Influence of surface effects on neutron skin in atomic nuclei

S. V. Lukyanov*, A. I. Sanzhur

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: lukyanov@kinr.kiev.ua

Abstract: The influence of the diffuse surface layer of a finite nucleus on the mean square radii and their isotopic shift is investigated. We present the calculations within the Gibbs - Tolman approach using the experimental values of the nucleon separation energies. Results are compared with that obtained by means of a direct variational method based on Fermi-like trial functions.

Keywords: neutron skin, Gibbs - Tolman approach, direct variational method, Skyrme forces.

References:

1. W.D. Myers. Geometric properties of leptodermous distributions with applications to nuclei. Nucl. Phys. A 204 (1973) 465. https://doi.org/10.1016/0375-9474(73)90388-6

2. C.J. Batty et al. Experimental Methods for Studying Nuclear Density Distributions. In: Advances in Nuclear Physics. Ed. by J.W. Negele and E. Vogt (New York: Plenum Press, 1989) Vol. 19, p. 1. https://doi.org/10.1007/978-1-4613-9907-0_1

3. M. Warda et al. Analysis of bulk and surface contributions in the neutron skin of nuclei. Phys. Rev. C 81 (2010) 054309. https://doi.org/10.1103/PhysRevC.81.054309

4. S.V. Lukyanov, A.I. Sanzhur. Neutron skin and halo in medium and heavy nuclei within the extended Thomas - Fermi theory. Nucl. Phys. At. Energy 17(1) (2016) 5. https://doi.org/10.15407/jnpae2016.01.005

5. J.W. Gibbs. In: The Collected Works (New York: Longmans, Green and Co., 1928) Vol. I, p. 219. Google books

6. R.C. Tolman. The effect of droplet size on surface tension. J. Chem. Phys. 17(3) (1949) 333. https://doi.org/10.1063/1.1747247

7. J.S. Rowlinson, B. Widom. Molecular Theory of Capillarity (Oxford: Clarendon Press, 1982). Google books

8. V.M. Kolomietz, S.V. Lukyanov, A.I. Sanzhur. Curved and diffuse interface effects on the nuclear surface tension. Phys. Rev. C 86 (2012) 024304. https://doi.org/10.1103/PhysRevC.86.024304

9. V.M. Kolomietz et al. Equation of state and radii of finite nuclei in the presence of a diffuse surface layer. Phys. Rev. C 95 (2017) 064305. https://doi.org/10.1103/PhysRevC.95.054305

10. V.M. Kolomietz, S.V. Lukyanov, A.I. Sanzhur. Nucleon distribution in nuclei beyond the β-stability line. Phys. Rev. C 85 (2012) 034309. https://doi.org/10.1103/PhysRevC.85.034309

11. V.M. Kolomietz, A.I. Sanzhur. Thin structure of β-stability line and symmetry energy. Int. Jour. Mod. Phys. E 22(1) (2013) 1350003. https://doi.org/10.1142/S0218301313500031

12. V.M. Kolomietz, A.I. Sanzhur. Equation of state and symmetry energy within the stability valley. Eur. Phys. J. A 38 (2008) 345. https://doi.org/10.1140/epja/i2008-10679-1

13. M. Brack, C. Guet, H.-B. Håkansson. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

14. T. Suzuki et al. Neutron skin in Na isotopes studied via their interaction cross sections. Phys. Rev. Lett. 75 (1995) 3241. https://doi.org/10.1103/PhysRevLett.75.3241

15. G. Audi et al. The Ame2012 atomic mass evaluation. (I). Evaluation of input data, adjustment procedures. Chin. Phys. C 36(12) (2012) 1287; https://doi.org/10.1088/1674-1137/36/12/002

M. Wang et al. The Ame2012 atomic mass evaluation. (II). Tables, graphs, and references. Chin. Phys. C 36(12) (2012) 1603. https://doi.org/10.1088/1674-1137/36/12/003

16. A. Trzcińska et al. Neutron density distributions deduced from antiprotonic atoms. Phys. Rev. Lett. 87 (2001) 082501. https://doi.org/10.1103/PhysRevLett.87.082501

17. L. Ray. Neutron isotopic density differences deduced from 0.8 GeV polarized proton elastic scattering. Phys. Rev. C 19 (1979) 1855. https://doi.org/10.1103/PhysRevC.19.1855

18. A. Krasznahorskay et al. Neutron-skin thickness in neutron-rich isotopes. Nucl. Phys. A 731 (2004) 224. https://doi.org/10.1016/j.nuclphysa.2003.11.034

19. V.E. Starodubsky, N.M. Hintz. Extraction of neutron densities from elastic proton scattering by 206,207,208Pb at 650 MeV. Phys. Rev. C 49 (1994) 2118. https://doi.org/10.1103/PhysRevC.49.2118

20. S. Karataglidis et al. Discerning the neutron density distribution of 208Pb from nucleon elastic scattering. Phys. Rev. C 65 (2002) 044306. https://doi.org/10.1103/PhysRevC.65.044306

21. B.C. Clark, L.J. Kerr, S. Hama. Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering. Phys. Rev. C 67 (2003) 054605. https://doi.org/10.1103/PhysRevC.67.054605