Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 3, pages 265-274.
Section: Radiobiology and Radioecology.
Received: 16.03.2020; Accepted: 09.07.2020; Published online: 16.12.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2020.03.265

Mapping of radioactive contamination with predetermined confidence level

Yu. V. Khomutinin*, S. E. Levchuk, V. P. Protsak, V. O. Kashparov

Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: khomutinin@gmail.com

Abstract: Standard approaches to the construction of maps of radioactive contamination do not provide errors in map data, so such maps do not, in fact, guarantee the accuracy of the map information. In this paper, based on the fact that the characteristics of radioactive contamination at a particular point in the territory have a lognormal probability distribution, a methodology for creating maps with a guaranteed confidence level of the provided information has been proposed and tested. There are considered two ways of creating maps, based on the results of "direct" measurements of radioactive contamination characteristics and in the combination of "direct" and "indirect" measurements of values statistically related to the mapping characteristic. The approaches and use of kriging methods proposed in the article allow to create maps with a given level of confidence and, accordingly, to take into account the risks caused by the uncertainty of measurements of radioactive contamination characteristics and uncertainty of their approximation.

Keywords: mapping, uncertainty of mapping, radioactive contamination, radioactive contamination density, dose rate, kriging.

References:

1. V.A. Kashparov et al. Soil contamination with 90Sr in the near zone of the Chernobyl accident. Journal of Environment Radioactivity 56(3) (2001) 285. https://doi.org/10.1016/S0265-931X(00)00207-1

2. K. Saito et al. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environment Radioactivity 139 (2015) 308. https://doi.org/10.1016/j.jenvrad.2014.02.014

3. Law of Ukraine "On the Legal Regime of the Territory Suffered from Radioactive Contamination as a Result of the Chornobyl Accident" of February 27, 1991 No. 791a-XII. Vidomosti Verkhovnoyi Rady URSR 16 (1991) Art. 198. (Ukr) https://zakon.rada.gov.ua/laws/show/791%D0%B0-12

4. V. Kashparov et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth System Science Data 10 (2018) 339. https://doi.org/10.5194/essd-10-339-2018

5. I. Labunska et al. Current radiological situation in areas of Ukraine contaminated by the Chernobyl accident: Part 1. Human dietary exposure to Caesium-137 and possible mitigation measures. Environment International 117 (2018) 250. https://doi.org/10.1016/j.envint.2018.04.053

6. R. Michel. Measuring, Estimating, and Deciding under Uncertainty. Applied Radiation and Isotopes 109 (2016) 6. https://doi.org/10.1016/j.apradiso.2015.12.013

7. M. Kendall, A. Stewart. The Advanced Theory of Statistics: Inference and Relationship (Moskva: Nauka, 1973) 899 p. (Rus) Google books

8. Yu.V. Khomutinin, V.A. Kashparov, E.I. Zhebrovskaya. Optimization of Sampling and Measurements of Samples during Radioecological Monitoring (Kyiv: VIPOL, 2001) 160 p. (Rus) Book

9. Yu.V. Khomutinin. Optimization of sampling for assessment of contamination density by local territory radionuclides. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 1(9) (2003) 145. (Rus) http://jnpae.kinr.kiev.ua/04.1/Articles_PDF/jnpae-2003-04-1-145.pdf

10. Yu.V. Khomutinin, S.E. Levchuk, V.V. Pavliuchenko. Optimization of radiation monitoring of agricultural products and lands. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(3) (2016) 259. (Ukr) https://doi.org/10.15407/jnpae2016.03.259

11. K.A. Maltsev, S.S. Mukharamova. Construction of Models of Spatial Variables (using the Surfer package) (Kazan: Kazan University, 2014) 103 p. (Rus) Book

12. T. Hengl, G.B.M. Heuvelink, A. Stein. A generic framework for spatial prediction of soil variables based on regression kriging. Geoderma 120(1-2) (2004) 75. https://doi.org/10.1016/j.geoderma.2003.08.018

13. T. Hengl, G.B.M. Heuvelink, D.G. Rossiter. About regression-kriging: From equations to case studies. Computers & Geosciences 33 (2007) 1301. https://doi.org/10.1016/j.cageo.2007.05.001

14. Yu.V. Khomutinin et al. Mapping of “spots” of radioactive contamination. Yaderna ta Radiatsiyna Bezpeka (Nuclear and Radiation Safety) 2 (2018) 49. (Rus) https://doi.org/10.32918/nrs.2018.2(78).08

15. Yu.V. Khomutinin et al. Operational mapping of areas contaminated with radionuclides. Yaderna ta Radiatsiyna Bezpeka (Nuclear and Radiation Safety) 3 (2019) 51. (Ukr) https://doi.org/10.32918/nrs.2019.3(83).06

16. Yu.V. Khomutinin et al. Mapping of radionuclide-contaminated agricultural land to make them available for use. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(3) (2019) 285. (Ukr) https://doi.org/10.15407/jnpae2019.03.285

17. V. Kashparov et al. Environmental behaviour of radioactive particles from Chernobyl. Journal of Environmental Radioactivity. 208-209 (2019) 106025. https://doi.org/10.1016/j.jenvrad.2019.106025

18. V.A. Kashparov et al. Soil Contamination with Fuel Component of Chernobyl Radioactive Fallout. Radiochemistry 45(2) (2003) 189. https://doi.org/10.1023/A:1023897612740

19. S.A. Ayvazyan. Applied statistics. Fundamentals of Econometrics. Vol. 2 (Moskva: UNITY-DANA, 2001) 432 p. (Rus)