Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 4, pages 338-346.
Section: Radiobiology and Radioecology.
Received: 30.04.2020; Accepted: 17.11.2020; Published online: 28.01.2021.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2020.04.338

Reconstruction of the absorbed dose of ionizing radiation for helophytes in the water bodies of the near emergency zone at the Chornobyl NPP

V. V. Belyaev*, O. M. Volkova, D. I. Gudkov, S. P. Pryshlyak

Institute of Hydrobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: belyaev-vv@ukr.net

Abstract: Based on modeling the dynamics of the Chornobyl emission radionuclide content in the components of the most polluted reservoirs of the Chornobyl Exclusion Zone, the absorbed dose for helophytes was reconstructed. During the growing season of 1986, the absorbed dose of plants of Glyboke Lake was 78 Gy, Daleke Lake 39 Gy. The absorbed dose rate of plant roots was 2.4 times higher than that of aboveground organs. According to actual data, in the period 2016 - 2019 in the Glyboke Lake average dose of external and internal plant irradiation was about 7.5 mGy/year, and in the Daleke Lake 5.6 mGy/year. On abnormally contaminated sections of the Glyboke Lake, the external dose reaches 0.5 - 1.0 Gy/year. During the period 1986 - 2020, the maximum cumulative (biological) dose of helophytes of Glyboke Lake can be 190 Gy, Daleke Lake 80 - 85 Gy.

Keywords: higher aquatic plants, absorbed dose, radionuclides, modeling, an exclusion zone of the accident at the Chornobyl nuclear power plant.

References:

1. D.I. Gudkov et al. Lesion in Common Reed by Gall-Producing Arthropods in Water Bodies of the Chernobyl NPP Exclusion Zone. Hydrobiological Journal 42(1) (2006) 82. http://doi.org/10.1615/HydrobJ.v42.i1.80

2. D. Gudkov et al. Dose rates and effects of chronic environmental radiation on hydrobionts within the Chernobyl exclusion zone. In: Radiation Risk Estimates in Normal and Emergency Situations. Ed. by A.A. Cigna and M. Durante (Dordrecht: Springer, 2006) p. 69. https://doi.org/10.1007/1-4020-4956-0_6

3. N.L. Shevtsova, D.I. Gudkov. Cytogenetic effects of long-term radiation on higher aquatic plants within the Chernobyl accident Exclusion Zone. Radioprotection 44(5) (2009) 937. https://doi.org/10.1051/radiopro/20095167

4. M.A. Nurgudin, N.L. Shevtsova, D.I. Gudkov. Effects of chronic low-dose radiation on the common reed within the Chernobyl accident Exclusion Zone. Radioprotection 44(5) (2009) 941. https://doi.org/10.1051/radiopro/20095168

5. N.L. Shevtsova, D.I. Gudkov. Cytogenetic damages in the common reed Phragmites australis in the water bodies of the Chornobyl exclusion zone. Hydrobiological Journal 49(2) (2013) 85. https://doi.org/10.1615/HydrobJ.v49.i2.80

6. N.L. Shevtsova, A.A. Yavniuk, D.I. Gudkov. Effect of rest period on germination of the common reed seeds from the water bodies of the Chornobyl exclusion zone. Hydrobiological Journal 50(5) (2014) 78. https://doi.org/10.1615/HydrobJ.v50.i5.80

7. D.I. Gudkov et al. Radiation-induced cytogenetic and hematologic effects on aquatic biota within the Chernobyl exclusion zone. Journal Environ. Radioactivity 151(2) (2016) 438. https://doi.org/10.1016/j.jenvrad.2015.09.004

8. Yu.A. Izrael et al. Chernobyl: Radioactive Contamination of Natural Environments (Leningrad: Gidrometeoizdat, 1990) 296 p. (Rus) https://geol.msu.ru/sites/default/files/chernobyl.pdf

9. Radio Geoecology of Water Bodies in the Zone of Influence of the Chernobyl Accident. Ed. O.V. Voitsekhovich. Vol. 1 (Kyiv: Chornobylinterinform, 1997) 308 p. (Rus)

10. M.M. Talerko. Reconstruction of Chernobyl source parameters using gamma dose rate measurements in town Pripjat. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 11(2) (2010) 169. (Rus) http://jnpae.kinr.kiev.ua/11.2/Articles_PDF/jnpae-2010-11-0169-Talerko.pdf

11. Modeling and Studying the Mechanisms of the Radioactive Substances Transfer from Terrestrial Ecosystems to Water Bodies in the Zone of Influence of the Chornobyl Accident. Ed. by U. Sansone and O. Voitsekhovich (Chornobyl: Chornobylinterinform, 1996) 196 p. (Rus)

12. V.V. Belyaev, E.N. Volkova. Modeling of processes of self-purification of water masses from radioactive substances. Yaderna Enerhetyka ta Dovkillya 1(3) (2014) 34. (Rus) http://dnic.com.ua/_ld/0/58__3-6_ENG.pdf

13. V.V. Belyayev, O.M. Volkova, S.P. Pryshlyak. Modeling of dynamics of radioactivity formation of aquatic plants. Yaderna Enerhetyka ta Dovkillya 1(5) (2015) 44. (Ukr) http://dnic.com.ua/_ld/0/77__-in_English-.pdf

14. E.A. Timofeeva-Resovskaya. Distribution of Radioisotopes over the Main Components of Freshwater Reservoirs (Sverdlovsk: Ural Department of the Russian Academy of Sciences, 1963) 78 p. (Rus)

15. A.N. Marey. Sanitary Protection of Water Bodies from Radioactive Contamination (Moskva: Atomizdat, 1976) 224 p. (Rus)

16. O.M. Volkova et al. Parameters of radionuclide distribution in reservoirs of different trophic status. Nature of Western Polissya and adjacent territories: Zbirnyk Naukovykh Prats. Ed. by F.V. Zuzuka (Lutsk: Skhidno-Yevropeyskyy Natsionalnyy Universytet Imeni Lesi Ukrayinky) 11 (2014) 127. (Ukr)

17. L.F. Lukina, N.N. Smirnova. Physiology of Higher Aquatic Plants (Kyiv: Naukova Dumka, 1988) 188 p. (Rus)

18. L.A. Sirenko et al. Vegetation and Bacterial Population of the Dnieper and its Reservoirs (Kyiv: Naukova Dumka, 1989) 232 p. (Rus)

19. M.I. Kuzmenko et al. Radionuclides in Aquatic Ecosystems of Ukraine (Kyiv: Chornobylinterinform, 2001) 318 p. (Ukr)

20. V.V. Belyayev, O.M. Volkova, S.P. Pryshlyak. Dynamics of the absorbed dose of ionizing radiation in the root system of air-water plants. In: Proc. of the VIII Congress of the Hydroecological Society of Ukraine (Kyiv, 2019) p. 231. (Ukr)

21. S.P. Prishlyak et al. Regularities of 137Cs Accumulation in the Above the Ground and Underground Phytomass of Helophytes. Hydrobiological Journal 51(6) (2015) 68. https://doi.org/10.1615/HydrobJ.v51.i6.80

22. V.D. Romanenko et al. Radioactive and Chemical Pollution of the Dnieper and its Reservoirs after the Accident at the Chernobyl NPP (Kyiv: Naukova Dumka, 1992) 194 p. (Rus)

23. O.M. Volkova. Technological radionuclides in aquatic organisms of different types of reservoirs. Thesis abstract of the doctor of Biological Sciences (Kyiv, 2008) 34 p. (Ukr)

24. Ch. Ganzha et al. Physicochemical forms of 90Sr and 137Cs in components of Glyboke Lake ecosystem in the Chornobyl exclusion zone. Journal of Environmental Radioactivity 127 (2014) 176. https://doi.org/10.1016/j.jenvrad.2013.03.013

25. G.I. Gneusheva. Accumulation of plutonium-239 by freshwater fish and aquatic vegetation. Problems of radioecology of aquatic organisms. Trudy Instituta Ekologii Rasteniy i Zhivotnykh 78 (1971) 115. (Rus)

26. O.F. Nemets, Yu.V. Hofman. Nuclear Physics Handbook (Kyiv: Naukova Dumka, 1975). (Rus)

27. V.F. Kozlov. Radiation Safety Handbook (Moskva: Atomizdat, 1977) 384 p. (Rus)

28. A.K. Savinsky, V.I. Popov, V.A. Kulyamin. LET Spectra and Quality Factor of Incorporated Radionuclides. Handbook (Moskva: Energoatomizdat, 1986) 144 p. (Rus)