Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal

 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 2, pages 121-126.
Section: Nuclear Physics.
Received: 05.02.2021; Accepted: 02.04.2021; Published online: 10.09.2021.
PDF Full text (en)

Spontaneous double alpha decay: First experimental limit and prospects of investigation

V. I. Tretyak*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address:

Abstract: Nuclear decays with simultaneous emission of two alpha particles are energetically possible for a number of nuclides. Prospects of searching for such kind of decay for nuclides present in the natural isotopic composition of elements are discussed here. The first experimental limit on half-life for 2α decay is set for 209Bi as T1/2 > 2.9·1020 y at 90 % C.L., using the data of work [P. de Marcillac et al. Nature 422 (2003) 876]. Theoretical T1/2 estimations for the process are also given. Using these values, which are on the level of 1033 y or more, one can conclude that the prospects of experimental observation of 2α decay are very pessimistic.

Keywords: double alpha decay, low background experiments, theoretical and experimental half-lives.


1. M. Goeppert-Mayer. Double beta-disintegration. Phys. Rev. 48 (1935) 512.

2. R. Saakyan. Two-neutrino double-beta decay. Annu. Rev. Nucl. Part. Sci. 63 (2013) 503.

3. K. Blaum et al. Neutrinoless double-electron capture. Rev. Mod. Phys. 92 (2020) 045007.

4. W.H. Furry. On transition probabilities in double beta-disintegration. Phys. Rev. 56 (1939) 1184.

5. M.J. Dolinski, A.W.P. Poon, W. Rodejohann. Neutrinoless double beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 69 (2019) 219.

6. M. Goeppert. Uber die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Naturwissenschaften 17 (1929) 932.

7. M. Goeppert-Mayer. Uber Elementarakte mit zwei Quantensprungen. Ann. Phys. (Leipz.) 401 (1931) 273.

8. G. Sutter. Étude experimentale de la double émission gamma dans les transitions monopolaires des noyaux 16O, 40Ca et 90Zr. Ann. Phys. (Paris) 13 (1963) 323.

9. C. Walz et al. Observation of the competitive double-gamma nuclear decay. Nature 526 (2015) 406.

10. M. Pfutzner et al. Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84 (2012) 567.

11. Yu.N. Novikov. Some features of nuclei close to the boundaries of nucleon stability. Int. Workshop on U 400 Program. JINR (1979) p. 15.

12. E.E. Berlovich, Yu.N. Novikov. One- and many-nucleon radioactivity of atomic nuclei. In: B.S. Dzhelepov (ed.). Modern Methods of Nuclear Spectroscopy 1986 (Leningrad, Nauka, 1988) p. 107.

13. D.N. Poenaru, M. Ivascu. Two alpha, three alpha and multiple heavy-ion radioactivities. J. Physique Lett. 46 (1985) 591.

14. D.N. Poenaru, M.S. Ivascu. Particle Emission from Nuclei, Vol. II: Alpha, Proton, and Heavy Ion Radioactivities (USA, CRC Press (1989) 271 p. Google books

15. W. von Oertzen. Alpha-cluster condensations in nuclei and experimental approaches for their studies. In: C. Beck (ed.). Clusters in Nuclei. Vol. 1 (Germany, Springer, 2010) 328 p. (Lecture Notes in Physics 818).

16. M. Wang et al. The Ame2016 atomic mass evaluation. (II). Tables, graphs and references. Chin. Phys. C 41 (2017) 030003.

17. P. Belli et al. Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 55 (2019) 140.

18. R. Bernabei et al. First model independent results from DAMA/LIBRA-phase2. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 19 (2018) 307.

19. E. Aprile et al. The XENON1T dark matter experiment. Eur. Phys. J. C 77 (2017) 881.

20. G. Alimonti et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Meth. A 600 (2009) 568.

21. J. Meija et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88 (2016) 293.

22. R.B. Firestone et al. Table of Isotopes. 8th ed. (USA, John Wiley & Sons, 1996) and CD update (1998).

23. D.N. Poenaru et al. Systematics of cluster decay modes. Phys. Rev. C 65 (2002) 054308.

24. V.I. Tretyak. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33 (2010) 40.

25. S. Pirro, P. Mauskopf. Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 67 (2017) 161.

26. P. de Marcillac et al. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature 422 (2003) 876.

27. G.J. Feldman, R.D. Cousins. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57 (1998) 3873.

28. G.W. Kim et al. Improved intensities for the γ transitions with Eγ > 3 MeV from 208Pb*. Phys. Rev. C 102 (2020) 064306.

29. V.I. Tretyak. Spontaneous double alpha decay: First experimental limit and prospects of investigation. arXiv:2102.12005v1 [nucl-ex] 24 Feb 2021.

30. F. Mercier et al. Microscopic description of 2α decay in 212Po and 224Ra isotopes. Phys. Rev. Lett. 127 (2021) 012501.