Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 3, pages 237-242.
Section: Nuclear Physics.
Received: 07.10.2021; Accepted: 22.12.2021; Published online: 22.02.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2021.03.237

Evaluation of cross-section data for radionuclides used in positron emission tomography by effects of level density models using EMPIRE 3.2.2 code

Glara Fuad Hasan1,2,3,*, Edrees Muhammad-Tahir Nury1, Flavia Groppi2,3

1 Department of Physics, College of Education, University of Salahaddin, Erbil, Iraq
2 Department of Physics, University of Milan, Milan, Italy
3 Accelerator and Superconductivity Laboratory (LASA), Department of Physics, University of Milan and the National Institute of Nuclear Physics (INFN), Segrate (MI), Italy


*Corresponding author. E-mail address: gelara.hassan@su.edu.krd

Abstract: This work presents the evaluated results of cross-sections for natural chromium (natCr) with several nuclear reactions of natCr(d,x)52g,m+Mn, natCr(d,x)54Mn, natCr(d,x)51Cr, and natCr(d,x)48V using the statistical nuclear model EMPIRE 3.2.2 code with different level density models, for some radionuclides used in positron emission tomography. We compared the results to data sets found in literature, and data chosen from various sets of the electronic TENDL library.

Keywords: Mn radioisotopes, positron emission tomography scan, cross-section, nuclear medicine, EMPIRE 3.2.2 code.

References:

1. N. Ramamoorthy. Impact of nuclear medicine and radiopharmaceuticals on health-care delivery: Advances, lessons, and need for an objective value-matrix. Indian Journal of Nuclear Medicine 33(4) (2018) 273. https://doi.org/10.4103/ijnm.IJNM_56_18

2. Beneficial Use and Production of Isotopes. 2000 Update (Nuclear Energy Agency, OECD, 2000) 82 p. https://www.oecd-nea.org/jcms/pl_13448/beneficial-uses-and-production-of-isotopes-2000-update

3. L. Jodal, C. Le Loirec, C. Champion. Positron range in PET imaging: non-conventional isotopes. Physics in Medicine & Biology 59(23) (2014) 7419. https://doi.org/10.1088/0031-9155/59/23/7419

4. P. Martini. High-Yield Cyclotron Production of Metallic Radioisotopes for Nuclear Medicine. Ph.D. Thesis (Italy, Universita degli Studi di Ferrara, 2017).

5. S. Jadiyappa. Radioisotope: Applications, Effects, and Occupational Protection. In: Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment, 2018. https://doi.org/10.5772/intechopen.79161

6. M.A. Synowiecki, L.R. Perk, J.F.W. Nijsen. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharmacy and Chemistry 3 (2018) art. 3. https://doi.org/10.1186/s41181-018-0038-z

7. G. Saar et al. Anatomy, functionality, and neuronal connectivity with manganese radiotracers for positron emission tomography. Molecular Imaging and Biology 20(4) 2018 562. https://doi.org/10.1007/s11307-018-1162-6

8. M. Herman et al. EMPIRE: nuclear reaction model code system for data evaluation. Nuclear Data Sheets 108(12) (2007) 2655. https://doi.org/10.1016/j.nds.2007.11.003

9. H. An, C. Cai. Global deuteron optical model potential for the energy range up to 183 MeV. Phys. Rev. C 73(5) (2006) 054605. https://doi.org/10.1103/PhysRevC.73.054605

10. M. Şekerci, H. Özdoğan, A. Kaplan. Investigation on the Different Production Routes of Ga-67 Radioisotope by Using Different Level Density Models. Moscow University Physics Bulletin 74(3) (2019) 277. https://doi.org/10.3103/S0027134919030123

11. M. Şekerci, H. Özdoğan, A. Kaplan. An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n, γ) reactions. Radiochimica Acta 108(1) (2020) 11. https://doi.org/10.1515/ract-2019-3123

12. H. Özdoğan, M. Şekerci, A. Kaplan. Investigation of gamma strength functions and level density models effects on photon induced reaction cross-section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu. Applied Radiation and Isotopes 143 (2019) 6. https://doi.org/10.1016/j.apradiso.2018.10.011

13. M. Şekerci, H. Özdoğan, A. Kaplan. Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1 - 3. Modern Physics Letters A 35(24) (2020) 2050202. https://doi.org/10.1142/S0217732320502028

14. H. Özdoğan, M. Şekerci, A. Kaplan. An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of 50,52,53,54Cr (α,x) Reactions. Phys. Atom. Nucl. 83(6) (2020) 820. https://doi.org/10.1134/S1063778820660060

15. H. Özdoğan et al. Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes 169 (2021) 109583. https://doi.org/10.1016/j.apradiso.2020.109583

16. M. Herman et al. EMPIRE-3.2 Malta modular system for nuclear reaction calculations and nuclear data evaluation. Users Manual. INDC(NDS)-0603, BNL-101378-2013 (Brookhaven National Laboratory, National Nuclear Data Center, 2013) 297 p. https://www.bnl.gov/isd/documents/82108.pdf

17. F. Bianchi et al. On the production of 52gMn by deuteron irradiation on natural chromium and its radionuclidic purity. Applied Radiation and Isotopes 166 (2020) 109329. https://doi.org/10.1016/j.apradiso.2020.109329

18. A. D'Arrigo et al. Semi-empirical determination of the shell correction temperature and spin dependence by means of nuclear fission. Journal of Physics G: Nuclear and Particle Physics 20(2) (1994) 365. https://doi.org/10.1088/0954-3899/20/2/015

19. https://www-nds.iaea.org/public/download-endf/TENDL-2010/

20. https://www-nds.iaea.org/public/download-endf/TENDL-2012/;

    J. Koning, D. Rochman. Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets 113(12) (2012) 2841. https://doi.org/10.1016/j.nds.2012.11.002

21. https://www-nds.iaea.org/public/download-endf/TENDL-2013/

22. https://www-nds.iaea.org/public/download-endf/TENDL-2014/

23. https://tendl.web.psi.ch/tendl_2015/tendl2015.html

24. https://tendl.web.psi.ch/tendl_2017/reference.html;

    https://www-nds.iaea.org/public/download-endf/TENDL-2017/

25. https://tendl.web.psi.ch/tendl_2019/talys.html;

    https://www-nds.iaea.org/public/download-endf/TENDL-2019;

    J. Koning et al. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nuclear Data Sheets 155 (2019) 1. https://doi.org/10.1016/j.nds.2019.01.002

26. W.H. Burgus et al. Cross Sections for the Reactions Ti48(d,2n)V48; Cr52(d,2n)Mn52; and Fe56(d,2n)Co56. Phys. Rev. 95(3) (1954) 750. https://doi.org/10.1103/PhysRev.95.750

27. P. Kafalas, J.W. Irvine Jr. Nuclear excitation functions and thick target yields: (Cr + d). Phys. Rev. 104(3) (1956) 703. https://doi.org/10.1103/PhysRev.104.703

28. C. Xiaowu et al. Some measurements of deuteron induced excitation function at 13 MeV. Acta Physica Sinica 22 (1966) 250.

29. M. Cogneau, L. Gilly, J. Cara. Absolute cross sections and excitation functions for deuteron-induced reactions on chromium between 2 and 12 MeV. Nuclear Physics A 99(1) (1967) 686. https://doi.org/10.1016/0375-9474(67)90379-X

30. H.I. West Jr, R.G. Lanier, M.G. Mustafa. Cr52(p,n)52Mng,m and Cr52(d,2n)52Mng,m excitation functions. Phys. Rev. C 35(6) (1987) 2067. https://doi.org/10.1103/PhysRevC.35.2067

31. A. Hermanne et al. Cross sections of deuteron induced reactions on natCr up to 50 MeV: Experiments and comparison with theoretical codes. Nucl. Instr. Meth. B 269(21) (2011) 2563. https://doi.org/10.1016/j.nimb.2011.07.008

32. A.A. Alharbi. Experimental Results Evaluation and Theoretical Study for the Production of the Radio Isotope 52Mn Using P, D and A-Projectiles on V and Cr Targets. Arab Journal of Nuclear Sciences and Applications 49(3) (2016) 216. Article

33. E. Šimečková et a. Consistent account of deuteron-induced reactions on natCr up to 60 MeV. Phys. Rev. C 98(3) (2018) 034606. https://doi.org/10.1103/PhysRevC.98.034606

34. R.B. Firestone, C.M. Baglin, S.Y. Frank Chu. Table of Isotopes: 1999 Update. 8th Edition. 224 p. https://www.wiley.com/en-gb/Table+of+Isotopes:+1999+Update,+8th+Edition-p-9780471356332

35. P.P. Coetzee, M.A. Peisach. Activation cross sections for deuteron-induced reactions on some elements of the first transition series, up to 5.5 MeV. Radiochimica Acta 17(1) (1972) 1. https://doi.org/10.1524/ract.1972.17.1.1

36. A.T.J. Klein, F. Rösch, S.M. Qaim. Investigation of 50Cr(d,n)51Mn and natCr(p,x)51Mn processes with respect to the production of the positron emitter 51Mn. Radiochimica Acta 88(5) (2000) 253. https://doi.org/10.1524/ract.2000.88.5.253

37. N. Baron, B.L. Cohen. Activation cross-section survey of deuteron-induced reactions. Phys. Rev. 129(6) (1963) 2636. https://doi.org/10.1103/PhysRev.129.2636