Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 3, pages 294-299.
Section: Radiobiology and Radioecology.
Received: 19.04.2021; Accepted: 22.12.2021; Published online: 22.02.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2021.03.294

Two stages in the accumulation of 137Cs by mushroom Suillus luteus after the Chornobyl accident

N. E. Zarubina1,*, O. S. Burdo1, L. P. Ponomarenko2, O. V. Shatrova3

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
3 SE UKRMETRTESTSTANDARD, Kyiv, Ukraine


*Corresponding author. E-mail address: nataliia.zarubina@gmail.com

Abstract: Studies of the 137Cs content in fruit bodies of Suillus luteus in the territory of the Chornobyl exclusion zone and Kyiv region outside the zone were carried out during the period 1986 - 2020. It was found that the dynamics of 137Cs activity in the mushroom can be described as a two-stage process. The first stage since 1986 was characterized by the annual increase in levels of specific activity of 137Cs for the following 10 - 12 yrs. During the second stage, there has been a gradual decrease in concentrations of 137Cs. The ecological half-life of 137Cs in the mushroom at the second stage differs for different sampling sites. Its minimum values were noted at villages Yaniv and Novo-Shepelychy sampling sites inside the exclusion zone. The maximum of 137Cs ecological half-life in Suillus luteus was observed on the Rzhyshchiv sampling site, which is the most remote from the Chornobyl Nuclear Power Plant outside the exclusion zone.

Keywords: mushroom, Suillus luteus, 137Cs, Chornobyl (Chernobyl) NPP accident, Chornobyl (Chernobyl) exclusion zone, two stages.

References:

1. A.R. Byrne. Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident. J. Environ. Radioact. 6 (1988) 177. https://doi.org/10.1016/0265-931X(88)90060-4

2. G. Heinrich. Distribution of radiocesium in the different parts of mushrooms. J. Environ. Radioact. 18 (1993) 229. https://doi.org/10.1016/0265-931X(93)90029-7

3. H. Bem et al. Accumulation of 137Cs by mushrooms from Rogozno area of Poland over the period 1984 - 1988. J. Radioanal. Nucl. Chem. 145(1) (1990) 39. https://doi.org/10.1007/bf02328766

4. K.J. Johanson et al. Radiocaesium in Wildlife of a Forest Ecosystem in Central Sweden. In: Transfer of Radionuclides in Natural and Semi-Natural Environment (London New-York: Elsevier Applied Science, 1990) p. 183. https://op.europa.eu/en/publication-detail/-/publication/f558d3ff-37d0-4ef5-86f2-a9db1e084b7e

5. L.R. Bakken, R.A. Olsen. Accumulation of radiocaesium in fungi. Can. J. Microbiol. 36(10) (1990) 704. https://doi.org/10.1139/m90-119

6. J. Lambinon et al. La radiocontamination des champignons sauvages en Wallonie (Belgique) cuite a laccident de Tchernobyl. Nucl. Envir. 2 (1988) E37.

7. M. Strandberg. Radiocesium in a Danish pine forest ecosystem. Sci. Total Envir. 157 (1994) 125. https://doi.org/10.1016/0048-9697(94)90571-1

8. J. Lehto, K. Vaaramaa, A. Leskinen. 137Cs, 239,240Pu and 241Am in boreal forest soil and their transfer into wild mushrooms and berries. J. Environ. Radioact. 116 (2013) 124. https://doi.org/10.1016/j.jenvrad.2012.08.012

9. N. Zarubina. The influence of biotic and abiotic factors on 137Cs accumulation in higher fungi after the accident at Chernobyl NPP. J. Environ. Radioact. 161 (2016) 66. https://doi.org/10.1016/j.jenvrad.2015.11.014

10. R.M. Alexakhin et al. Model of 90Sr cycling in a forest biogeocenosis. Sci. Total Envir. 157 (1994) 83. https://doi.org/10.1016/0048-9697(94)90567-3

11. Z. Pietrzak-Flis, I. Radwan, L. Rosiak. Migration of 137Cs in soil and its transfer to mushrooms and vascular plants in mixed forest. Sci. Total Environ. 186 (1996) 243. https://doi.org/10.1016/0048-9697(96)05118-2

12. K.J. Johanson et al. Activity concentrations of 137Cs in moose and their forage plants in Mid-Sweden. J. Environ. Radioact. 22 (1994) 251. https://doi.org/10.1016/0265-931X(94)90085-X

13. Y. Muramatsu, S. Yoshida, M. Sumjya. Concentration of radiocesium and pottasium in basidiomycetes collected in Japan. Sci. Total Environ. 105 (1991) 29. https://doi.org/10.1016/0048-9697(91)90327-b

14. M. Vinichuk et al. Correlations between potassium, rubidium and cesium (133Cs and 137Cs) in sporocarps of Suillus variegatus in a Swedish boreal forest. J. Environ. Radioact. 102(4) (2011) 386. https://doi.org/10.1016/j.jenvrad.2011.02.007

15. A. Gentili, G. Gremingi, V. Sabbatini. Ag-110m in fungi in central Italy after the Chernobyl accident. J. Environ. Radioact. 13(1) (1991) 75. https://doi.org/10.1016/0265-931X(91)90040-M

16. D. Mascanzoni. Uptake of Sr-90 and Cs-137 by mushrooms following the Chernobyl accident. In: Transfer of Radionuclides in Natural and Semi-Natural Environment (London New-York: Elsevier Applied Science, 1990) p. 459. https://op.europa.eu/en/publication-detail/-/publication/f558d3ff-37d0-4ef5-86f2-a9db1e084b7e

17. G.M. Koval, N.E. Shatrova. The content of radionuclides of emergency origin in the fungi (macromycetes) of the Chernobyl exclusion zone. In: Chornobyl. The Exclusion Zone (yiv, 2001) p. 378. (Ukr)

18. J. Falandysz et al. Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. Environ. Sci. Pollut. Res. 25 (2018) 615. https://doi.org/10.1007/s11356-017-0454-8

19. Y. Huang et al. Radiocesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima. J. Environ. Radioact. 152 (2016) 28. https://doi.org/10.1016/j.jenvrad.2015.11.002

20. N. Niimura et al. Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements. J. Environ. Radioact. 139 (2015) 234. https://doi.org/10.1016/j.jenvrad.2013.12.020

21. I.A. Dudka, S.P. Vasser. Fungi. A guide for mycologist and mushroom hunter (yiv, 1987) 536 p. (Rus)

22. O. Guillitte, A. Fraiture, J. Lambinon. Soil-fungi radiocesium transfer in forest ecosystems. In: Transfer of Radionuclides in Natural and Semi-Natural Environment (London New-York: Elsevier Applied Science, 1990). p. 468. https://op.europa.eu/en/publication-detail/-/publication/f558d3ff-37d0-4ef5-86f2-a9db1e084b7e

23. W. Ruhm et al. The Cs-137/Cs-134 ratio in fungi as an indicator of the major mycelium location in forest soil. J. Environ. Radioact. 35 (1997) 129. https://doi.org/10.1016/S0265-931X(96)00051-3

24. O.O. Orlov, O.B. Kalish. Radioactive contamination of fungi. In: Basics of Forest Radioecology (Kyiv, 1999) p. 117. (Rus)

25. N.E. Zarubina, O.L. Zarubin. Differences in accumulation of 137Cs by obligate and facultative representatives of ecological group of mushrooms-symbiotrophes. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 8 (2002) 123. (Rus) http://jnpae.kinr.kiev.ua/03.2/Articles_PDF/jnpae-2002-03-2-123.pdf

26. D. Grabowski et al. Activity of cesium-134 and cesium-137 in game and mushrooms in Poland. Sci. Total Environ. 157(1-3) (1994) 227. https://doi.org/10.1016/0048-9697(94)90583-5

27. L. Cocchi et al. Radioactive caesium (134Cs and 137Cs) in mushrooms of the genus Boletus from the Reggio Emilia in Italy and Pomerania in Poland. Isotopes Environ. Health Stud. 53(6) (2017) 620. https://doi.org/10.1080/10256016.2017.1337761

28. G. Kirchner, O. Daillant. Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Sci. Total Environ. 222(1-2) (1998) 63. https://doi.org/10.1016/s0048-9697(98)00288-5

29. I. Amundsen, G. Gulden, P. Strand. Accumulation and long term behaviour of radiocesium in Norwegian fungi. Sci. Total Envir. 184 (1996) 163. https://doi.org/10.1016/0048-9697(96)05077-2

30. W.R. Schell et al. Application of a Dynamic Model for Evaluating Radionuclide Concentration in Fungi. In: Proc. of Int. Cong. Radiat. Protect (Vienna, 1996) p. 2. https://www.irpa.net/members/OCR_IRPA_9_Proceedings_reduced.pdf

31. N.E. Shatrova. Long-term dynamics of the content of emergency 137Cs in edible mushrooms on the territory of the "southern trace". Hihiyena Naselenykh Mist 37 (2000) 385. (Rus)

32. N.E. Zarubina, O.S. Burdo. Dynamics of specific activity of fruiting bodies of fungi in the territory contaminated as a result of the Chernobyl accident. In: Book of Abstracts. XXII Ann. Sci. Conf. of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, 26 - 30 January 2015 (Kyiv, 2015) p. 168. (Ukr) http://www.kinr.kiev.ua/Annual_Conferences/KINR2015/book%20of%20abstracts%202015.pdf

33. O.S. Burdo, N.E. Zarubina, O.V. Shatrova. Dynamics of specific activity of 137Cs in fruit bodies of Suillus luteus: nonlocal model. In: Book of Abstracts, XXVII Ann. Sci. Conf. of the Institute of Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, 21 - 25 April 2020 (Kyiv, 2020) p. 292. (Ukr) http://www.kinr.kiev.ua/Annual_Conferences/KINR2020/pdf/book%20of%20%20abstracts_2020.pdf