Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2021, volume 22, issue 4, pages 358-364.
Section: Radiation Physics.
Received: 14.06.2021; Accepted: 27.04.2022; Published online: 4.06.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2021.04.358

Ion-photon emission from titanium target under ion beam sputtering

L. Jadoual1, A. Afkir1, A. El Boujlaidi1, M. Ait El Fqih2,*, R. Jourdani1, A. Kaddouri1

1 Laboratory of Materials, Energy, and Environment, Cadi Ayyad University, Marrakech, Morocco
2 Laboratory of Artificial Intelligence & Complex Systems Engineering, ENSAM, Hassan II University of Casablanca, Casablanca, Morocco


*Corresponding author. E-mail address: m.aitelfqih@gmail.com

Abstract: Ion photon emission in the wavelength range of 280 - 420 nm resulting from 5 Kr+ ion beam sputtering from titanium in the presence and the absence of oxygen was studied experimentally. The observed spectra consist of a series of discrete lines superimposed with a broadband continuum. Discrete lines are attributed to excited neutral Ti I and excited ions Ti II. The differences in the observed intensities of spectral lines are discussed in terms of the electron-transfer processes between the excited sputtered atom and electronic levels of the solid. The radiative dissociation process and breaking of chemical bonds seem to contribute to the enhancement of emitted photons intensity. Continuum radiation was observed and is very probably related to the electronic structure of titanium. The collective deactivation of 3d-shell electrons appears to play a role in the emission of this radiation.

Keywords: sputtering, titanium, light emission, electron-transfer model, continuum radiation.

References:

1. R. Kelly. Towards a unified model for the formation of sputtered excited states. In: Inelastic Particle Surface Collisions. Eds. E. Taglauer, W. Heiland (Berlin: Springer-Verlag, 1981) p. 84. https://inis.iaea.org/collection/NCLCollectionStore/_Public/14/764/14764081.pdf

2. M. Suchanska. Ion-induced photon emission of metals. Prog. Surf. Sci. 54(2) (1997) 165. https://doi.org/10.1016/S0079-6816(97)00004-X

3. J.M. Hollas. Modern Spectroscopy. (Chichester: Wiley, 2004). https://www.worldcat.org/title/modern-spectroscopy/oclc/54776194

4. H. Gnaser. Energy and Angular Distributions of Sputtered Species. In: Sputtering by Particle Bombardment. Eds. R. Behrisch, W. Eckstein. Topics Appl. Phys. 110 (2007) 231. https://doi.org/10.1007/978-3-540-44502-9

5. V.V. Bobkov et al. Mechanisms of formation of sputtered particles in excited states at Ar+ ion bombardment of oxide targets. Nucl. Instrum. Methods B 256(1) (2007) 501. https://doi.org/10.1016/j.nimb.2006.12.049

6. N.A. Azarenkov et al. Ion-photon emission under ion bombardment of garnet structures of different composition. Vacuum 105 (2014) 91. https://doi.org/10.1016/j.vacuum.2013.10.022

7. P. Agarwal, S. R. Bhattacharyya, D. Ghose. Transient effect in light emission during oxygen ion bombardment of a beryllium-copper target. Appl. Surf. Sci. 133(3) (1998) 166. https://doi.org/10.1016/S0169-4332(98)00200-1

8. M.L. Yu. Charged and excited states of sputtered atoms. In: Sputtering by Particle Bombardment. III. Eds. R. Behrisch, K. Wittmaack. Topics Appl. Phys. 64 (1991) 91. https://doi.org/10.1007/3-540-53428-8

9. A.H. Dogar, A. Qayyum. Atomic excitations during ion beam sputtering of YBa2Cu3O7 targets. Nucl. Instrum. Methods B 247(2) (2006) 290. https://doi.org/10.1016/j.nimb.2006.01.058

10. J. Fournier et al. Optical spectroscopy analysis of YBa2Cu3O7 at room temperature and at 10 K. J. Appl. Phys. 69 (1991) 2382. https://doi.org/10.1063/1.348724

11. M. Ait El Fqih et al. Bombardment-induced light emission of clean and oxygen-covered Al, Cu, and Cux Al1-x targets. Surf. Interface Anal. 50(10) (2018) 969. https://doi.org/10.1002/sia.6513

12. A. Kaddouri et al. Photon emission from clean and oxygenated Si and SiO2 surfaces bombarded by 5 keV krypton ions. Appl. Surf. Sci. 256 (2009) 116. https://doi.org/10.1016/j.apsusc.2009.07.087

13. M. Ait El Fqih et al. On the validity of the electron transfer model in photon emission from ion bombarded vanadium surfaces. Eur. Phys. J. D 63 (2011) 97. https://doi.org/10.1140/epjd/e2011-10614-6

14. L. Jadoual et al. Optical Emission from Ion-Bombarded Nickel and Nickel Oxide. Spectr. Lett. 47(5) (2014) 363. https://doi.org/10.1080/00387010.2013.856321

15. A. El Boujlaidi et al. Photon emission produced by Kr+ ions bombardment of Cr and Cr2O3 targets. Nucl. Instrum. Methods B 343 (2015) 158. https://doi.org/10.1016/j.nimb.2014.11.074

16. A. Afkir et al. Angular distribution of particles sputtered from a copper target by 5-keV Kr ions: Experiment and simulation study. Surf. Interface Anal. 53(9) (2021) 792. https://doi.org/10.1002/sia.6980

17. R. Jourdani et al. Effects of lithium insertion and deinsertion into V2O5 thin films: Optical, structural, and absorption properties. Surf. Interface Anal. 50(1) (2018) 52. https://doi.org/10.1002/sia.6331

18. P.-G. Fournier et al. Angular distribution of sputtered particles and surface morphology: the case of beryllium under a krypton beam at various incidences. Nucl. Instrum. Methods B 230 (2005) 577. https://doi.org/10.1016/j.nimb.2004.12.104

19. M. Ait El Fqih, P.-G. Fournier. Optical emission from Be, Cu and CuBe targets during ion beam sputtering. Nucl. Instrum. Methods B 267 (2009) 1206. https://doi.org/10.1016/j.nimb.2009.01.159

20. C.B. Kerkdijk, R. Kelly. Oxygen-dependent photon emission from Ne+-bombarded Mg. Rad. Effects 38(1-2) (1978) 73. https://doi.org/10.1080/00337577808233211

21. P.G. Fournier et al. Light emission from Be and BeO surfaces bombarded by 5 keV Kr+ ions. Nucl. Instrum. Methods B 249 (2006) 153. https://doi.org/10.1016/j.nimb.2006.03.103

22. A. Lawicki, A. Lawicka, K. Kreft. Luminescence in collisions of low-energy ions with graphite and Al2O3. Eur. Phys. J. Spec. Top. 144 (2007) 161. https://doi.org/10.1140/epjst/e2007-00121-0

23. A. El Boujlaidi et al. Continuum radiation emitted from transition metals under ion bombardment. Eur. Phys. J. D 66 (2012) 273. https://doi.org/10.1140/epjd/e2012-30347-2

24. A.A. Radzig, B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions (Berlin, Heidelberg: Springer, 1985) 466 p.; https://doi.org/10.1007/978-3-642-82048-9

CRC Handbook of Chemistry and Physics. D.R. Linde (ed.). 83rd ed. (Washington DC: CRC Press, 2002) 2664 p. https://www.amazon.com/CRC-Handbook-Chemistry-Physics-83rd/dp/0849304830

25. C.W. White, N.H. Tolk. Optical Radiation from Low-Energy Ion-Surface Collisions. Phys. Rev. Lett. 26 (1971) 486. https://doi.org/10.1103/PhysRevLett.26.486

26. I. Terzić, B. Perović. Spectral analysis of light emitted from metallic targets bombarded by high energy ions. Surf. Sci. 21 (1970) 86. https://doi.org/10.1016/0039-6028(70)90065-8

27. A. Imanishi, E. Tsuji, Y. Nakato. Dependence of the Work Function of TiO2 (Rutile) on Crystal Faces, Studied by a Scanning Auger Microprobe. J. Phys. Chem. C 111(5) (2007) 2128. https://doi.org/10.1021/jp0668403

28. H. Wu, L.-S. Wang. Electronic structure of titanium oxide clusters: TiOy(y = 1 - 3) and (TiO2)n (n = 1 - 4). J. Chem. Phys. 107(20) (1997) 8221. https://doi.org/10.1063/1.475026

29. C.W. White et al. Continuum optical radiation produced by low-energy heavy particle bombardment of metal targets. Nucl. Instrum. Methods 132 (1976) 419. https://doi.org/10.1016/0029-554X(76)90769-2

30. D.J. Mowbray et al. Stability and Electronic Properties of TiO2 Nanostructures with and without B and N Doping. J. Phys. Chem. C 113(28) (2009)12301. https://doi.org/10.1021/jp904672p

31. A. Afanasieva et al. Comparison of the main parameters of the ion-photon emission of titanium atoms and singly charged ions. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 11(1) (2017) 146. https://doi.org/10.1134/S1027451017010037

32. G. Blaise, G. Slodzian. Processus de formation d'ions à partir d'atomes éjectés dans des états électroniques surexcités lors du bombardement ionique des métaux de transition. J. Phys. France 31(1) (1970) 93. https://doi.org/10.1051/jphys:0197000310109300

33. C. Coudray, G. Slodzian. Contribution of the Landau-Zener-Stueckelberg model to the understanding of positive secondary-ion emission. Phys. Rev. B 49(14) (1994) 9344. https://doi.org/10.1103/PhysRevB.49.9344

34. E.O. Rausch, A.I. Bazhin, E.W. Thomas. On the origin of broad band optical emission from Mo, Nb, and W bombarded by heavy ions. J. Chem. Phys. 65(11) (1976) 4447. https://doi.org/10.1063/1.432979

35. T. Kiyan, V.V. Gritsyna, Y. Fogel. On the continuous spectrum emitted by particles ejected from the surface of solid targets by an ion beam. Nucl. Instrum. Methods 132 (1976) 415. https://doi.org/10.1016/0029-554X(76)90768-0

36. A. Qayyum, M.N. Akhtar. Continuum light emission from sputtered species of graphite during ion beam irradiation. Eur. Phys. J. D 12 (2000) 181. https://doi.org/10.1007/s100530070055