УДК 539.163

АНОМАЛИИ В КОЭФФИЦИЕНТАХ ВНУТРЕННЕЙ КОНВЕРСИИ К-ЗАПРЕЩЕННЫХ ГАММА-ПЕРЕХОДОВ ИЗ РАСПАДА ^{177m}Lu

А. П. Лашко, Т. Н. Лашко

Институт ядерных исследований НАН Украины, Киев

На магнитном β-спектрометре типа $\pi\sqrt{2}$ измерены некоторые участки спектра электронов внутренней конверсии ^{177m}Lu. С высокой точностью определены коэффициенты внутренней конверсии и отношения интенсивностей электронов внутренней конверсии на L-подоболочках ¹⁷⁷Lu для γ-перехода с энергией 116 кэВ. Проводится сравнение экспериментальных данных с теоретическими значениями.

В настоящей работе речь пойдет об аномалиях в коэффициентах внутренней конверсии γ-лучей (КВК), обусловленных эффектом проникновения. Под эффектом проникновения или внутриядерной конверсией в теории внутренней конверсии понимают поправку в КВК, возникающую при замене переходных электромагнитных потенциалов, вычисленных для точечного ядра, на переходные потенциалы, вычисленные для ядра конечных размеров.

В соответствии с работой [1] матричный элемент конверсионного перехода, вычисленный с учетом конечных размеров ядра, разделяется на два слагаемых

$$\langle M_e \rangle = \langle M_e \rangle_{r < R} + \langle M_e \rangle_{r > R}$$

для области r < R и r > R, где r и R – координаты электрона и нуклона, которые взаимодействуют при переходе. Матричный элемент $\langle M_e \rangle_{r>R}$ оказывается, как и в случае точечного ядра, пропорциональным матричному элементу γ -перехода $\langle U_r \rangle$. Поэтому КВК

$$\alpha = \left| \frac{\left\langle M_e \right\rangle}{\left\langle U_{\gamma} \right\rangle} \right|^2 = \sum_{\chi} \left| M_{\chi} + i \Delta_{\chi} \right|^2$$

где M_{χ} - нормальный конверсионный матричный элемент, не зависящий от ядерных переменных, а

$$\Delta_{\chi} = \frac{\left\langle M_e \right\rangle_{r < R}}{\left\langle U_{\gamma} \right\rangle}$$

представляет собой вклад от внутриядерной конверсии; $\chi = (l - j)(2j + 1)$ - характеризует состояние электрона после процесса конверсии.

Следуя работе [1], в целях упрощения расчетов удобно разложить входящие в выражение для внутриядерного конверсионного матричного элемента $\langle M_e \rangle_{r < R}$ функции Ханкеля и Бесселя и

электронные волновые функции в ряд по степеням r^n , поскольку внутри ядра $r < R_0$. После этого интегрирование по электронным переменным выполняется в явном виде и Δ_{χ} можно представить в виде линейной комбинации так называемых электронных параметров и ядерных параметров проникновения.

Эффект проникновения в случае переходов электрической мультипольности описывается двумя ядерными параметрами [2]:

$$\lambda^{(1)} = \frac{\left\langle f \, \left\| (R/R_0)^{L+2} \, Y_L^* \, \right\| i \right\rangle}{\left\langle f \, \left\| (R/R_0)^L \, Y_L^* \, \right\| i \right\rangle (1+K_\gamma)}, \tag{1}$$

$$\lambda^{(2)} = \frac{(m_p R_0 / e\hbar) \left\langle f \left\| J_{\mathfrak{A}} \left[n T_L^{(0)^*} \right] (R / R_0)^{L+1} \right\| i \right\rangle}{\left\langle f \left\| (R / R_0)^L Y_L^* \right\| i \right\rangle (1 + K_{\gamma})}, \quad (2)$$

где J_{π} – оператор ядерного тока перехода; Y_L и T_L – сферические и векторные сферические функции соответственно; R_0 – радиус ядра, $R_0 = 1,2A^{1/3}$ фм; n – единичный вектор нормали; множитель $m_p R_0/e\hbar$, где m_p – масса протона, делает матричный элемент проникновения в числителе (2) безразмерным; K_{γ} - относительный вклад спиновых токов перехода в матричный элемент γ -излучения электрической мультипольности.

Величина λ определена формулами (1) и (2) как отношение безразмерных матричных элементов проникновения и излучения. Внутриядерный конверсионный матричный элемент как видом подынтегральных функций, так и пределами интегрирования отличается от радиационного матричного элемента.

Обычно поправки, обусловленные эффектом проникновения, не превышают 2 % и не оказывают сколько-нибудь значительного влияния на величину КВК. Совершенно по-другому обстоит дело в случае сильно заторможенных γ-переходов. Заторможенность γ-перехода означает, что знаменатель в формулах (1) и (2) существенно уменьшен. В этом случае вклад от внутриядерной конверсии может теперь стать основным и определить собой величину КВК. При этом безусловно необходимо, чтобы правила отбора, ответственные за уменьшение вероятности γ-излучения, не влияли бы или влияли в значительно меньшей степени на вероятность внутриядерной конверсии.

Действительно, в некоторых случаях (запрет, вызванный совпадением гиромагнитных отношений остова и индивидуальных частиц - так называемый *l*-запрет; запрет по асимптотическим квантовым числам в деформированных ядрах) правила отбора для матричных элементов γ-излучения и внутриядерной конверсии оказываются различными [3].

В случае К-запрета правила отбора для матричного элемента проникновения и γ -излучения одинаковы. Как конверсионный, так и радиационный переходы идут за счет примесной ядерной волновой функции, вклад которой определяется малым множителем Δ . В отношении он сокращается, следовательно, аномалий в К-запрещенных переходах не должно быть, что действительно и наблюдается в эксперименте для большинства К-запрещенных переходов. Однако при больших К-запретах, когда играют роль много примесных состояний, правила могут не совпасть и тогда КВК оказывается аномальным.

Количественная оценка величины этих примесей является в настоящее время очень трудной задачей. Поэтому предсказать, будут ли наблюдаться аномалии в КВК для какого-либо определенного К-запрещенного перехода, практически невозможно. Некоторая статистика набрана по К-запрещенным Е1-переходам, получена даже эмпирическая зависимость величины ядерного параметра проникновения от фактора запрета по Вайскопфу [4]. Для ряда двукратно К-запрещенных Е1-переходов в изотопах тулия, иттербия и лютеция Сергеенковым и Харитоновым [5] выполнены расчеты матричных элементов проникновения на основе модели Нильсона как результат кориолисова взаимодействия. Вычисленные значения в пределах погрешности совпадают с экспериментальными. Однако объяснить происхождение аномалий в КВК семикратно К-запрещенного Е1-перехода 57 кэВ в ¹⁸⁰Нf не удается. По-видимому, при таком сильном запрете $(Fw = 10^{16})$ играют роль факторы, которые изучены еще недостаточною. Для К-запрещенных переходов Е2-мультипольности известны единичные факты аномалий в КВК, обусловленных эффектом проникновения, а для переходов более высоких мультипольностей даже не протабулированы электронные параметры, необходимые для определения параметров проникновения из экспериментальных данных.

Изомер ^{177m}Lu ($I^{\pi} = 23/2^{-}$, $T_{1/2} = 160$ сут) является весьма перспективным ядром для поисков аномалий в КВК К-запрещенных у-переходов. При его разрядке возбуждаются целых три у-перехода электрической мультипольности с высокой степенью запрета по квантовому числу К. Распад ^{177т}Lu происходит как на уровень 17/2⁺ ротационной полосы основного состояния ¹⁷⁷Lu посредством К-запрещенного ЕЗ-перехода с энергией 116 кэВ (Fw = $9,1 \cdot 10^8$), так и β-распадом на изомерное состояние $23/2^{+177}$ Hf. Последнее разряжается, в частности, К-запрещенным Е2-переходом с энергией 228 кэВ (Fw = $1.5 \cdot 10^8$) на уровень 19/2⁺ ротационной полосы одноквазичастичного состояния $9/2^+$ [624] ¹⁷⁷ Hf, а также К-запрещенным Е1-переходом с энергией 55 кэВ $(Fw = 3.5 \cdot 10^{13})$ на уровень 21/2 ротационной полосы основного состояния ¹⁷⁷Нf (рис. 1).

Рис. 1. Фрагмент схемы распада ^{177т}Lu.

Эти переходы заторможены по сравнению с одночастичными оценками и для них возможны аномалии в коэффициентах внутренней конверсии γ-лучей, обусловленные эффектом проникновения. Поскольку наблюдаемые при этом отклонения КВК от их стандартных табличных значений в большинстве случаев невелики, требуется проведение прецизионных измерений, которые можно выполнить только при помощи β-спектрометров высокого разрешения.

К сожалению, для Е1-перехода ү55 кэВ согласно последнему обзору [6] таких данных нет. Можно оценить только полный КВК из баланса интенсивностей для уровня 21/2⁻ 1260 кэВ. Как видно из схемы распада ^{177m}Hf, этот уровень запитывается переходом γ55 кэВ, а разряжается двумя внутриполосными переходами γ242 и γ466 кэВ М1- и Е2-мультипольности соответственно. Поэтому баланс интенсивностей для уровня 21/2⁻ 1260 кэВ можно записать в виде

 $(1 + \alpha_{tot}(55))I_{\gamma}(55) = (1 + \alpha_{tot}(242))I_{\gamma}(242) +$

 $+(1+\alpha_{tot}(466))I_{\gamma}(466)$.

Использовав экспериментальные значения относительных интенсивностей соответствующих γ -лучей из [7 - 9] и теоретические значения КВК для переходов γ 242 и γ 466 кэВ из [10], мы определили полный КВК Е1-перехода γ 55 кэВ как $\alpha_{tot}(55)_{exp} = 0,376 \pm 0,091$. Теоретическое же значение КВК для Е1-перехода с энергией 55 кэВ в гафнии согласно [10] составляет: $\alpha_{tot}(55)_{th} = 0,337$. Этой точности, к сожалению, недостаточно, чтобы получить ответ на вопрос – есть ли аномалии в КВК этого перехода.

В работе [11] для перехода у228 кэВ нами были обнаружены небольшие расхождения экспериментальных и теоретических значений КВК, которые не объясняются примесями других мультипольностей той же четности. Эти расхождения нельзя объяснить также ошибками в теоретических расчетах. Так, например, в нашей работе [12] проведены тщательные измерения отношений КВК на L-подоболочках для ускоренных Е2-переходов в редкоземельной области ядер, из которых следует, что расхождения теоретических отношений с экспериментальными в среднем не превышают 1 % и, возможно, объясняются систематическими погрешностями измерений. Их можно устранить, если предположить наличие внутриядерной конверсии с параметрами проникновения $\lambda_1 = -0.95 \pm 0.15$ и $\lambda_2 = 15 \pm 7$.

В работе [11] нами также впервые были выполнены измерения относительных и абсолютных КВК на L_2 - и L_3 -подоболочках ¹⁷⁷Lu для перехода γ 116 кэВ. Однако точности экспериментальных данных оказалось недостаточно, чтобы дать ответ на вопрос, имеются ли аномалии в КВК этого перехода. В настоящей работе выполнены прецизионные измерения относительных интенсивностей электронов внутренней конверсии γ 116 кэВ на L-подоболочках ¹⁷⁷Lu, уточнены абсолютные КВК.

Источник ^{177m}Lu был получен при облучении на реакторе мишеней из обогащенного ¹⁷⁶Lu в реакции (n, γ) . Измерения спектров электронов внутренней конверсии выполнены на магнитном β-спектрометре типа $\pi\sqrt{2}$ с железным ярмом и радиусом равновесной орбиты 50 см. Снималась зависимость скорости счета импульсов (электронов) от приложенного напряжения между источником и камерой спектрометра, при этом магнитное поле оставалось постоянным и стабилизировалось по трем точкам вдоль радиуса методом ядерного магнитного резонанса. Система стабилизации обеспечивает стабильность поля спектрометра около 10^{-5} в течение суток. Высокое напряжение, подаваемое на источник, также стабилизируется с относительной точностью $5 \cdot 10^{-5}$.

Регистрация осуществлялась двумя счетчиками Гейгера - Мюллера, включенными в схему совпадений. Измерения проводились короткими сериями путем многократного сканирования по спектру в обоих направлениях. Одиночные спектры и спектры совпадений накапливались в запоминающем устройстве с последующей передачей в ЭВМ для обработки.

Разрешение спектрометра составляет 0,03 % по импульсу при телесном угле 0,07 % от 4π. Характеристики спектрометра позволяют определять относительные интенсивности конверсионных линий с точностью до 1 % и разности энергий между ними с точностью лучше 1 эВ.

Гамма-спектр 177m Lu измерен при помощи НРGе-детектора объемом 5 см³ и разрешением 0,9 кэВ на γ 344 152 Eu.

Для поисков аномалий в КВК необходимо иметь точные данные как об относительных, так и абсолютных КВК на различных подоболочках атома. Для этих целей кроме относительных КВК ү116 кэВ на L-подоболочках ¹⁷⁷Lu были измерены также отношения L-линий электронов внутренней конверсии (ЭВК) ү116 кэВ к L-линиям ЭВК ү113 кэВ, КВК которого мы использовали в качестве нормирующих, а также относительные интенсивности соответствующих γ-лучей. Участок конверсионного спектра, содержащий L-линии ЭВК этих переходов, представлен на рис. 2.

Переход $\gamma 113$ кэВ с первого возбужденного уровня ротационной полосы основного состояния ¹⁷⁷Hf (9/2⁻ \rightarrow 7/2⁻) имеет мультипольность M1 + E2. M1-компонент этого перехода сильно заторможен (F_W = 2,1 · 10³) из-за близости значений g-факторов (g_K и g_R). Вследствие этого $\gamma 113$ кэВ является почти чистым E2-переходом с небольшой примесью M1. Чтобы использовать его в качестве нормирующего, необходимо хорошо знать величину параметра смешивания $\delta(E2/M1)$.

Рис. 2. Участок конверсионного спектра, содержащий линии ЭВК γ-переходов с энергией 113 и 116 кэВ на L-подоболочках ¹⁷⁷Нf и ¹⁷⁷Lu.

На сегодняшний день известно девять экспериментальных значений этой величины, полученные разными авторами в разное время. Все они приведены в табл. 1.

Как видно из таблицы, некоторые из них существенно отличаются друг от друга. Ситуация осложняется еще и тем, что для М1-компонента этого перехода возможны аномалии в КВК, обу-

словленные эффектом проникновения. Эту возможность необходимо учитывать при определении параметра смешивания. В работе [17] нами были выполнены прецизионные (с точностью лучше 1 %) измерения отношений КВК на L-подоболочках ¹⁷⁷Нf для этого перехода. Из их анализа были получены значения параметра проникновения $\lambda = 1.8 \pm 0.2$ и параметра смешивания $|\delta(E2/M1)| = 4.20 \pm 0.11$. Величина параметра проникновения хорошо согласуется с имеющейся систематикой для переходов такого типа, а это в свою очередь подтверждает и правильность определения параметра смешивания. Если же, например, взять $\delta(E2/M1) = -(4.85 \pm 0.05)$ из [21] и использовать его совместно с данными о КВК для определения параметра проникновения, то получим $\lambda = -(4,7 \pm 0,5)$, которое противоречит теоретическим оценкам. При этом $\chi^2_{min} = 6,1$ для решения системы уравнений по методу наименьших квадратов в отличие от $\chi^2_{min} = 1,3$ при δ(Е2/М1) из [17]. Исходя из этих соображений, при расчете теоретических КВК для перехода у113 кэВ мы использовали величину параметра смешивания $|\delta(E2/M1)| = 4.20 \pm 0.11$.

Таблица 1. Экспериментальные значения параметра смешивания δ(E2/M1) для γ-перехода 113 кэВ из распада ¹⁷⁷Lu

δ(E2/M1)	Работа	δ(E2/M1)	Работа	δ(E2/M1)	Работа
$-(3,0\pm0,8)$	[13]	$-(4,0\pm0,2)$	[16]	$-(4,5\pm0,3)$	[19]
$-(3,7\pm0,3)$	[14]	$4,20 \pm 0,11*$	[17]	$-(4,8\pm0,2)$	[20]
$-(3,99 \pm 0,25)$	[15]	$-(4,75\pm0,07)$	[18]	$-(4,85\pm0,05)$	[21]

КВК (эксперимент)	КВК (теория)	$(KBK_{reop} - KBK_{ekcn})/KBK_{reop}, \%$
$L_1/L_3 = 0,053 \pm 0,023$	0,0430	$-(23 \pm 54)$
$L_2/L_3 = 1,243 \pm 0,031$	1,30	$4,4 \pm 2,4$
$\alpha(L_1) = 0.48 \pm 0.21$	0,398	$-(21 \pm 53)$
$\alpha(L_2) = 11,29 \pm 0,32$	12,0	$5,9 \pm 2,7$
$\alpha(L_3) = 9,09 \pm 0,25$	9,25	$1,7 \pm 2,7$
$\alpha(L) = 20,86 \pm 0,46$	21,7	$3,9 \pm 2,1$

Таблица 2. Коэффициенты внутренней конверсии γ-перехода с энергией 116 кэВ на L-подоболочках ¹⁷⁷Lu

Обработку конверсионных и γ-спектров проводили по разработанным нами программам [22 -24]. Всего было выполнено три серии измерений спектров ЭВК, аналогичных приведенному на рис. 2, и три серии измерений спектров γ-лучей. Окончательные значения отношений линий ЭВК и интенсивностей соответствующих им переходов определили как средневзвешенное из трех серий измерений. В качестве неопределенности экспериментальных значений использованы либо весовая погрешность, либо погрешность разброса в зависимости от того, какая из них оказалась больше. Относительные интенсивности линий ЭВК и абсолютные значения КВК γ 116 кэВ на L-подоболочках ¹⁷⁷Lu представлены в табл. 2. Здесь же приведены теоретические значения КВК и отношений КВК из работы [25], а также величина отклонения экспериментальных значений от теоретических.

Как видно из таблицы, для L2-подоболочки

наблюдаются отклонения от теоретических значений как для относительных, так и для абсолютных КВК, которые невозможно объяснить примесями М4-мультипольности. Возможно, как и в случае с переходом γ228 кэВ, они обусловлены эффектом проникновения.

СПИСОК ЛИТЕРАТУРЫ

- Church E.L., Weneser J. Effect of the finite nuclear size on internal conversion // Phys. Rev. – 1956. – Vol. 104. – P. 1382 – 1386.
- Банд И.М., Листенгартен М.А., Фересин А.П. Аномалии в коэффициентах внутренней конверсии гамма-лучей. - Л.: Наука, 1976. - 175 с.
- Войханский М.Е., Листенгартен М.А. О правилах отбора при конверсионных переходах // Изв. АН СССР. Сер. физ. – 1959. - Т. 23. - С. 238 - 243.
- 4. Листенгартен М.А. Аномальная внутренняя конверсия в электромагнитных переходах атомных ядер // Современные методы ядерной спектроскопии 1985. - Л.: Наука, 1986. - С. 142 - 204.
- 5. Сергеенков Ю.В., Харитонов Ю.И. Матричные элементы проникновения Е1-переходов. Л., 1982. 36 с. (Препр. / ЛИЯФ; № 811).
- 6. *Kondev F.G.* Nuclear data sheets for A = 177 // Nuclear Data Sheets. 2003. Vol. 98. P. 801 1095.
- Alexander P., Boehm F., Kankeleit E. Spin-23/2⁻ isomer of ¹⁷⁷Lu // Phys. Rev. – 1964. - Vol. 133. -P. B284 - B290.
- Chu Y.Y., Haustein P.E., Ward T.E. Decay of the fivequasiparticle isomeric states in ¹⁷⁷Hf // Phys. Rev. C. – 1972. - Vol. 6. - P. 2259 - 2268.
- Hnatowicz V. Precise measurement of gamma-ray intensities in the decay of 160,9 day isomeric state in ¹⁷⁷Lu // Czech. J. Phys. B. – 1981. - Vol. 31. - P. 260.
- Rosel F., Fries H.M., Alder K., Pauli H.C. Internal conversion coefficients for all atomic shells // Atom. Nucl. Data. Data Tables. - 1978. - Vol. 21. - P. 91 -514.
- Булгаков В.В., Казновецкий А.Б., Кирищук В.И. и др. Обнаружение эффекта проникновения в E2-переходе с энергией 228 кэВ в ¹⁷⁷Hf // Изв. АН СССР. Сер. физ. - 1990. - Т. 54. - С. 1011 - 1013.
- 12. Булгаков В.В., Гаврилюк В.И., Лашко А.П. и др. Определение отношений интенсивности линий внутренней конверсии (2⁺→0⁺)-переходов ¹⁵⁴Gd и ¹⁶⁶Er // Изв. АН СССР. Сер. физ. - 1981. - Т. 45. -С. 2133 - 2140.
- Törnkvist S., Ström S., Thun J.E. et al. Internal conversion studies of the 113 keV transition in ¹⁷⁷Hf // Nucl. Phys. A. – 1968. - Vol. 117. - P. 336 - 342.
- Hrastnik B., Basar I., Diksic M. et al. Directional correlation studies in the decay of ^{177g}Lu // Z. Phys. 1970. Vol. 239. P. 25.

- Agnihotry A.P., Gopinathan K.P., Jain H.C. Internalconversion studies in ¹⁷⁷Hf from the decay of ¹⁷⁷Lu // Phys. Rev. C. - 1974. - Vol. 9. - P. 336 - 345.
- 16. West H.J., Mann Jr.L.G., Nagle R.J. Decay of ¹⁷⁷Ta and ¹⁷⁷Lu to levels in ¹⁷⁷Hf // Phys. Rev. – 1961. -Vol. 124. - P. 527 - 543.
- 17. Булгаков В.В., Гаврилюк В.И., Казновецкий А.Б. и др. О эффекте проникновения в М1-компоненте ү-переходов с энергией 113 и 137 кэВ ¹⁷⁷Hf // Ядерная спектр. и структ. атом. ядра: Тез. докл. 40-го совещ. - Л.: Наука, 1990. - С. 111.
- Holmberg L., Stefansson V., Becker J. et al. Internal conversion and radiative processes of the 113 keV M1-E2 transition in ¹⁷⁷Hf // Phys. Scr. - 1972. - Vol. 6. - P. 177.
- Hogberg S., Jadrny R., Karlsson S.-E. et al. Relative internal conversion electron intensities of the 113 keV transitions in ¹⁷⁷Hf // Z. Phys. – 1972. - Vol. 254. -P. 89.
- 20. Keus H.E., Huiskamp W.J. Nuclear orientation of ¹⁷⁷Lu in iron, cobalt and nickel // Physica B. - 1977. -Vol. 85. - P. 137.
- 21. Dey C.C., Sinha B.K., Bhattacharya R. Timedifferential angular correlation of the 208-113 keV cascade of 177Hf at subnanosecond time resolution // Nuovo Cim. A. – 1992. - Vol. 105. - P. 1307.
- 22. Булгаков В.В., Гаврилюк В.И., Лашко А.П. и др. Магнитный бета-спектрометр высокого разрешения ИЯИ АН УССР. - Киев, 1986. - 48 с. – (Препр. / АН Украины. Ин-т ядерных исслед.; КИЯИ-86-33).
- 23. Лашко А.П., Лашко Т.Н., Одинцов А.А., Хоменков В.П. Комплексный анализ изотопного состава плутония в аварийном выбросе 4-го энергоблока Чернобыльской АЭС // Атомная энергия. - 2001. -Т. 91, вып. 6. - С. 443 - 448.
- 24. Kupryashkin V.T., Lashko A.P., Lashko T.N. et al. Determination of the energy standards by precision beta-spectroscopy methods // Problems of atomic science and technology. Series: Nuclear physics investigation. - 2004. - No. 5(44). - P. 67 - 71.
- 25. Hager R.S., Seltzer E.C. Internal conversion tables. Part I: K-, L-, M-shell conversion coefficients for Z = 30 to Z = 103 // Nucl. Data Tables A. - 1968. -Vol. 4. - P. 1 - 235.

АНОМАЛІЇ В КОЕФІЦІЄНТАХ ВНУТРІШНЬОЇ КОНВЕРСІЇ К-ЗАБОРОНЕНИХ ГАММА-ПЕРЕХОДІВ ІЗ РОЗПАДУ ^{177т}Lu

А. П. Лашко, Т. М. Лашко

На магнітному β-спектрометрі типу $\pi\sqrt{2}$ досліджено деякі ділянки спектра електронів внутрішньої конверсії ^{177m}Lu. З високою точністю визначено коефіцієнти внутрішньої конверсії та відношення інтенсивностей електронів внутрішньої конверсії на L-підоболонках ¹⁷⁷Lu для γ-переходу з енергією 116 кеВ. Отримані експериментальні дані порівнюються з їх теоретичними значеннями.

ANOMALIES IN INTERNAL-CONVERSION COEFFICIENTS OF THE K-FORBIDDEN GAMMA-TRANSITIONS FROM THE ^{177m}Lu DECAY

A. P. Lashko, T. N. Lashko

Some sections of the ^{177m}Lu conversion electron spectra were measured by means of $\pi\sqrt{2}$ magnetic β -spectrometer. Relative intensities of internal-conversion electron lines and absolute values of internal conversion coefficients on L-subshells of ¹⁷⁷Lu for γ 116 keV transition were determined with high precision. The experimental data were compared with theoretical values.

Поступила в редакцию 07.04.08, после доработки – 28.07.08.