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1. Introduction 
 

Recently, in a number of papers [1 - 4], the pro-
cesses of relaxation of collective excitations in a 
Fermi system were considered in the framework of 
the diffuse approximation. This approximation is 
based on a nonlinear diffusion equation in momentum 
space which contains the kinetic coefficients of diffu-
sion and drift. In the general case, the diffusion and 
drift coefficients depend not only on time but also on 
momentum. However, an approximation of constant 
kinetic coefficients is often used. In this case, the non-
linear diffusion equation can be simplified and solved 
exactly [5]. This solution allows us to study the evo-
lution of the Fermi system in time and obtain an 
expression for the relaxation time of both collective 
excitations and excitations of the particle-hole type in 
atomic nuclei [1, 5]. 

The approximation of constant kinetic coefficients 

is rather rough since it does not take into account their 

rather significant dependence on momentum [2, 3]. 

The study of the apparent momentum dependence of 

the kinetic coefficients is actually a separate problem. 

In this case, when it is considered by the methods of 

the kinetic theory it is necessary to solve the problem 

with the ninefold collision integral by means of which 

the coefficients are determined. To simplify calcula-

tions at low temperatures the small momentum trans-

fer approximation is used when particles are scattered 

near the Fermi surface. However, this is not enough 

to obtain a physically correct result. It is necessary to 

make an assumption about the nature of the interac-

tion of the scattering particles. Previously, the iso-

tropic probability approximation was considered a 

good approximation of nucleon scattering [6, 7]. 

However, in this case, when calculating  the  kinetic 
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coefficients divergent integral expressions are 

obtained. In previous papers, we showed that this can 

be avoided by imposing short-range conditions on the 

internucleon potential [3]. In particular, for the Gauss 

potential, it was possible to obtain convergent expres-

sions for the kinetic coefficients and calculate their 

numerical values and temperature dependencies 

based on such phenomenological parameters of inter-

nucleon interaction as the potential depth and its 

effective radius. At the same time, the calculation of 

the kinetic coefficients for zero temperature was not 

carried out due to the arising technical difficulties. 

This work is devoted to solving these technical 

difficulties and to the exact calculation of the kinetic 

coefficients of diffusion and drift at zero temperature 

of the Fermi system and in the case of excitation of a 

particle-hole pair. 
 

2. Kinetic diffusion and drift coefficients 
 

Consideration will begin using the results already 

obtained in our previous papers. Let us write down 

the general expressions for the kinetic coefficients of 

diffusion and drift [3, 8]  
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Here g  is the spin-isospin degeneracy factor, m  is 

the nucleon mass, d d    is the nucleon scattering 

cross section, 
2 2j jp m=   is the kinetic energy. The 

blocking factor that takes into account the Pauli 

principle is indicated by a tilde over the distribution 

function ( ) 1 ( ).f f= −p p  

Recall that in the microscopic calculation of the 

kinetic coefficients of diffusion ( )pD p  and drift 

( )pK p  one considers the scattering of nucleons with 

initial momenta 1p  and 2p  into the final states 3p  

and 4 .p  Nucleon scattering occurs near the Fermi 

surface, so the cross section d d    depends on the 

square of the small momentum transferred 

1 3= −s p p  [3, 6].  

After substituting Eq. (4) into Eqs. (1) and (3) and 
integrating over the small momentum transfer ,s  we 

get 
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Carrying out the transformations described in 

detail in Appendix A, we obtain general expressions 

for the diffusion coefficient ( )pD p  and the integral 

value ( ),A p  which is included in the definition of 

the drift coefficient Eq. (2), for the case of spherically 

symmetric distributions ( ) ( )f f p=p  of nucleons in 

the momentum space 
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Note, that in order for the integral expressions of 

the Eqs. (7) and (8) to have limited values the fol-

lowing condition for the differential cross section 

must be satisfied: 
 

 ( )5 2lim 2 (1 cos ) 0
k

d
k k

d→


 = 


qk  (9) 

 

This condition is satisfied by the finite-radius 

inter-particle interaction with the following Gaussian 

form-factor 2 2

0 0( ) exp( 2 )v r v r r= −   which is appro-

priate for calculations of the in-medium cross-section 

within the transport approaches. The differential cross 

section d d    in the first Born approximation is 

then given by [9]  
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where 0r  and 0v  are the free parameters. 
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Substituting Eq. (10) into the integral expressions 

(7) and (8) and performing transformations which are 

described in detail in Appendix B, we obtain the final 

expressions for the diffusion coefficient ( )pD p  and 

integral expression ( ) :A p  
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where the functions of three variables ( )k x y    and 

( )k x y    have the form 
 

2 2 2

0( ) 8 (1 ) ,k x y k r xy   = −  
 

 2 2 2 2 2

0( ) 8 (1 )(1 ) .k x y k r x y   = − −  (13) 

 

Also here are the expressions 
 

2 2 2 ,xq p k pkx= + +  

 

 2 2 2 .yq p k pky= + +  (14) 

 

( )nI x  are modified Bessel functions of the first kind. 
 

3. Kinetic coefficients for a cold Fermi system 
 

Consider the Fermi system at zero temperature 

( )0 ,T =  which is described by the step distribution 

function in the momentum space 
 

 2 2( ) ( ).Ff p p p=  −  (15) 
 

For the step distribution function (15), the integra-

tion contribution is limited to a sphere with a radius 

,Fp  therefore, when integrating into the expressions 

(11) and (12), the product ( ) ( )x yf q f q  highlights a 

certain area, which can be taken into account by 

means of certain minimum and maximum values of 

the integration limits.  

The expressions for the diffusion coefficient 

( )pD p  and the quantity ( )A p  can be represented in 

a form convenient for further consideration 
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The minimum and maximum integration limits in 

the expressions (19) and (20) take the form 
 

min min(1 max( 1 )),x z=  −   

 

 max max( 1 min(1 )),y z= −    (21) 

 

where the notation is defined as 
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Accordingly, the integrand functions are written as 
 

( ) exp( ( ))G k x y k x y  = −     
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0( ) ( )exp( ( )) ( ( )).F k x y x y k x y I k x y  = − −       

(24) 
 

The expressions (16) and (17) at zero momentum 

are zero (0) 0,pD =  (0) 0.A =  As the momentum 

increases to infinitely large values both quantities 

asymptotically approach zero values 
 

 lim ( ) 0p
p
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→

=     lim ( ) 0.
p

A p
→

=  (25) 
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Fig. 1 shows the diffusion coefficient ( )pD p  

versus relative momentum (in units of the Fermi 

momentum Fp ) for the cold Fermi system ( )0 ,T =  

which are obtained in accordance with the 

expressions (16) - (24).  

For clarity, all the results were obtained for a light 

nucleus with a mass number 16,A=  because in the 

region of medium and heavy atomic nuclei,        

the calculations are not representative. The Fermi 

energy was chosen to be typical for nuclear matter 

37F =  MeV. As you can see, the diffusion 

coefficient is non-zero and has a maximum, which is 

located in the region of the Fermi surface and is 

approximately 22

,0( ) 3 38 10p FD p −    MeV2∙fm−2∙s. 

The drift coefficient in Fig. 2 is also non-zero and 

has a minimum with a negative sign which is loca-

lized near the Fermi surface ( 1 2Fp p   ) and is 
23

,0(1 2 ) 3 5 10p FK p −  −    MeV  fm 2−  s. In accor-

dance with expression (2), the coefficient drift tends 

to an infinitely large positive value as the momentum 

decreases to zero. Asymptotic dependencies of the 

diffusion ( )pD p  and drift ( )pK p  coefficients with 

an infinite increase in momentum are consistent with 

their limiting zero values (25). 
 

  
Fig. 1. Dependence of the diffusion coefficient ( )pD p  

on the relative momentum Fp p  for a cold Fermi 

system described by the step distribution function (15). 

Fig. 2. Dependence of the drift coefficient ( )pK p  on the 

relative momentum Fp p  for a cold Fermi system 

described by the step distribution function (15). 
 

It is interesting to compare the values of 

,0( )p FD p  and ,0(1 2 )p FK p  with the corresponding 

values of the diffusion and drift coefficients given in 

[5]: 3 2 -2 1MeV s ,20 10D  =  3 -125 10 .MeV sv = −   

It should be noted here that our approach considers 

the kinetic coefficients for the diffusion equation in 

partial derivatives with respect to time and 

momentum [2, 3]. This fact is denoted by the 

subscript “p” of the coefficients ( )pD p  and ( ).pK p  

In [5] the diffusion equation is written in partial 

derivatives with respect to time and energy. There-

fore, the corresponding kinetic coefficients D  and 

v  have different values and dimensions. Comparing 

the diffusion equation for both cases we find 
 

2

,0( ) ,F
p F

p
D D p

m

 
  

 
   

2

,0(1.2 ) .F
p F

p
v K p

m

 
  

 
 

 

Taking into account the value of the Fermi energy we 

obtain the value of the multiplication factor 
2 2 4 2 -260.709 1 .·0 fm sFp m    Substituting the 

obtained numerical values, we get 

3 2 -2 1MeV s ,24 10D    2 -13 MeV s .2.5 10v  −    As 

we can see, the diffusion coefficient obtained in our 

approach is quite close to the value from [5], while 

the drift coefficient differs by a factor of two. 

In accordance with the diffusion equation, the 

difference from zero of the diffusion and drift 

coefficients means that even in an absolutely cold 

Fermi system momentum transfer processes and 

consequently a change of state is possible. The most 

rapid smearing of the step distribution will occur in 

the region of the Fermi surface and as you move away 

from it the smearing rates will decrease. 
 

4. Particle-hole excitation in a cold Fermi system 
 

Let us now consider the excitation of a particle-

hole pair in a cold Fermi system. Such a state is 

described by the initial distribution function in the 

form 
 

2 2 2 2

in 1 2( ) ( ) ( )f p p p p p  =  − +  −    
 

 2 2 2 2 2 2

2 1( ) ( ) ( ).Fp p p p p p − + −  −  (26) 
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The distribution in ( )f p  of Eq. (26) means the 

particle located at 1 2p p p   and the hole excita-

tion at 
1 2p p p    for fixed 1 Fp p  and 

2 ,Fp p   

respectively. The intervals 
2 1p p p   = −  and 

2 1p p p = −  are derived from the conditions 
 

2
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4
( 0) 1,
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 = = −
  

 

 2

in3

4
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 = =
  (27) 

 

For such a distribution function, the product 

( ) ( )x yf q f q  has a slightly more complex character 

the general expression of which is given in Appendix 

B. This expression contains 12 terms that impose 

conditions on the integration limits 
min ,ix 

 
max ix 

 and 

min ,iy 
 

max iy 
 where 1 2i =     12. Expressions for 

these integration limits are given in Appendix C. So, 

taking into account the above, we present expressions 

for the diffusion coefficient and the integral value 
( ) :A p  
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4
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  −  

 
   

(30) 

where 
 

 
max max

min min

( ) ( ).

i i

i i

x y

i

x y

a p k dx dy F k x y
 

 

 =     (31) 

 

We have calculated the dependencies of the 

diffusion ( )pD p  and drift ( )pK p  coefficients on 

the momentum according to the expressions (28)-

(31). Two characteristic cases of excitation of a 

particle-hole pair are considered for three values of 

the excitation energy: 10 20exE =   and 30 MeV. In 

the first case (a), the nucleon is excited from a level 

lying below the Fermi energy by 5 MeV to different 

levels lying above the Fermi energy. In the second 

case (b), the nucleon is excited from different levels 

below the Fermi level to the same level which lies 

above the Fermi level by 5 MeV. Figs. 3 and 4 show 

the results of calculations for case (a), and Figs. 5 and 

6 show calculations for case (b).  

 

  
Fig. 3. Dependence of the diffusion coefficient ( )pD p  

on the relative momentum Fp p  in the case of 

excitation of a particle-hole pair for a Fermi system which 

is described by the distribution function (26) for case (a). 

Fig. 4. Dependence of the drift coefficient ( )pK p  on the 

relative momentum Fp p  in the case of excitation of a 

particle-hole pair for a Fermi system which is described 

by the distribution function (26) for case (a). 
 

In general, as can be seen from Fig. 3, the 

dependence on the momentum has a similar character 

to the case of the step distribution function which is 

added here for comparison as a dashed curve. It is also 

noteworthy that the higher the value of the excitation 

energy exE  the greater the value of ( )pD p  except 

for a small region of small impulses. 

In Fig. 4 we present the dependencies obtained for 

the drift coefficient ( )pK p  together with the case for 

the stepwise distribution. As can be seen from the 

figure, ( )pK p  is actually independent of the excita-

tion energy outside the Fermi surface (all curves 

coincide). In the middle of the  Fermi  sphere  (for  
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1Fp p  ), there is a noticeable strong oscillating de-

viation from the case of the stepwise distribution. 

Here one should note the appearance of one more 

additional minimum at values of the relative momen-

tum of approximately 0 18.Fp p    It is interesting 

to note that the position of this minimum does not de-

pend on the excitation energy but its depth decreases 

(the absolute value increases) with increasing .exE  

From a comparison of the distribution (26) and the 

stepwise distribution (15), we conclude that the devi-

ation in the dependencies in Fig. 4 from the dashed 

line and the appearance of irregular oscillations is 

obviously a manifestation of particle-hole excitation 

in the Fermi system. 

The calculation results for the second case (b) are 

shown in Fig. 5 and Fig. 6.  

 

  
Fig. 5. Dependence of the diffusion coefficient ( )pD p  

on the relative momentum Fp p  in the case of 

excitation of a particle-hole pair for a Fermi system which 

is described by the distribution function (26) for case (b). 

Fig. 6. Dependence of the drift coefficient ( )pK p  on the 

relative momentum Fp p  in the case of excitation of a 

particle-hole pair for a Fermi system which is described 

by the distribution function (26) for case (b). 
 

As we can see, the behavior of both kinetic 

coefficients is not qualitatively different from the first 

case (a). All comments and conclusions made for case 

(a) are also valid. It should only be noted here that the 

growth of the diffusion coefficient with the excitation 

energy occurs somewhat more intensively. 

In Fig. 7 we have shown for both cases the 

dependence of the maximum value of the diffusion 

coefficient ( )p FD p  lying on the Fermi surface on 

the excitation energy .exE  
 

 
Fig. 7. Dependence of the diffusion coefficient ( )p FD p  

on the excitation energy exE  of a particle-hole pair for 

a momentum Fp p= . The lower curve is the case (a), 

the upper curve is (b). 

Case (a) corresponds to the lower curve, case (b) 

to the upper one. These dependencies can be approxi-

mated using the expression 
 

 2

,0 1 2( ) ( ) 1p F p F ex exD p D p c E c E 
 
 

= +  +    (32) 

 

where the fitting coefficients are given in Table. 
 

Fitting coefficients 
 

Cases 1,c  MeV
1−
 2 ,c  MeV

2−
 

(a) 32 97 10−   52 51 10−−    

(b) 32 27 10−   
53 75 10−   

 

The coefficients 1c  for both cases have close 

values, but the coefficients at quadratic terms 2c  

have opposite signs. Thus, the quadratic dependence 

of the diffusion coefficient on the excitation energy 

has a directly opposite dependence in both cases. 
 

5. Conclusions 
 

In this paper, the properties of the kinetic diffusion 

( )pD p  and drift ( )pK p  coefficients in the momen-

tum space for a cold Fermi system and also for the 

case of excitation of a particle-hole pair in this system 

are considered for the first time.  We  have used the  
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fact that when integrating the expressions for the ki-

netic coefficients the stepwise distribution function 

highlights certain regions in the momentum space, 

that allow rewriting the twofold integral expressions 

so that instead of the distribution functions, certain 

limits of integration can be introduced into them. This 

gives a significant acceleration in numerical calcula-

tions and increases their accuracy. 

As a result of numerical calculations, it was found 

that in the cold Fermi system the diffusion coefficient 

( )pD p  is different from zero and has a positive 

maximum on the Fermi surface, at zero momentum it 

is zero and at an infinitely large increase in momen-

tum it approaches zero asymptotically. The drift co-

efficient ( )pK p  is also not zero. It has a negative 

minimum and approaches zero asymptotically as the 

relative momentum increases. When the momentum 

decreases to zero ( )pK p  becomes positive and tends 

to infinity. The obtained values of the coefficients 

,0( )p FD p  and ,0(1 2 )p FK p  are in good agreement 

with the values of the corresponding quantities given 

in the paper [5]. 

The difference from zero of the diffusion and drift 

coefficients means that even in an absolutely cold 

Fermi system momentum transfer processes are pos-

sible and consequently change the state. This change 

will occur as quickly as possible in the region of the 

Fermi surface and with distance from it the rate of 

smearing of the distribution function will decrease. 

In the case of excitation of a particle-hole pair two 

characteristic cases are considered for three values of 

the excitation energy. In general, the dependence of 

( )pD p  on momentum is similar to the case of the 

stepwise distribution. It is also noticeable that the 

higher the energy value excitation exE  the larger 

( )pD p  except for a small region of small momenta. 

The kinetic drift coefficient ( )pK p  inside the Fermi 

sphere exhibits a strong oscillating deviation from the 

case of the stepwise distribution and appears as 

another additional minimum. The position of this 

minimum does not depend on the excitation energy 

but its depth decreases (absolute value increases) with 

increasing .exE  

The obtained dependencies of the kinetic diffusion 

and drift coefficients in momentum space will be 

useful in further studying the evolution of the 

distribution function and also the processes of 

collective motion dissipation using the nonlinear 

diffusion equation.  
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Ukraine (Code 6541230, No. 0122U000848).  

 

Appendix A. General transformations of integral expressions 
 

Given the relationship between energy and momentum 2 2 ,j j m= p  the argument of the delta function 

can be rewritten as follows 
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2m m

 
 
 

− − − = − − −
p

p p p p p p  (A1) 

 

where it is taken into account that 1.p p  

We will introduce the new variables 2 − =p p q  and 4 − =p p k  which allow one to rewrite Eqs. (5) and 

(6) in the following form 
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Using the spherically symmetric distribution function ( ) ( ),f f p=p  p=p  and the relation [9] 
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2
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 − +  +
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we will rewrite Eqs. (A2) and (A3) as  
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( ) ( )2 2cos cos 2 cos { ( ) ( )
d

q k q k qk q k q k
d

 
 − + −  − +  + 

 
qp kp qk  

 

 2 2 2 22 cos 2 cosf q p qp f k p kp
   
   
   
   

 + + + + qp kp  (A5) 

 

Integrating into Eqs. (A4) and (A5) over q, we obtain 
 

2
5 2 2

3

0

2
( ) 2 cos

3 (2 )
p k

g
D p k dk d f k p kp

m


 
 
 
 

  + + 
   kp  

 

( ) ( )2 2 21 cos 2 (1 cos ) 2 cosq

d
d k f k p kp

d

 
 
 
 


  − − + + +


 qk qk qp  

 

 ( ) ( )2 2 21 cos 2 (1 cos ) 2 cos ,
d

k f k p kp
d

 
 
 
 


+ + + + −


qk qk qp  (A6) 

 

2
4 2 2

3

0

2
( ) 2 cos

(2 )
k

g
A p k dk d f k p kp

m


 
 
 
 

  + + 
   kp  

 

( ) ( )2 2 2cos cos 2 (1 cos ) 2 cosq

d
d k f k p kp

d

 
 
 
 


  − − + + −


 qp kp qk qp  

 

 ( ) ( )2 2 2cos cos 2 (1 cos ) 2 cos .
d

k f k p kp
d

 
 
 
 


− + + + −


qp kp qk qp  (A7) 

 

Let us choose the direction of the z  axis of the coordinate system in the direction of the vector p . Using 

the addition theorem for spherical harmonics, we can write in an arbitrary spherical coordinate system 
 

cos cos cos sin sin cos( )q k q k q k=   +    +  qk  

 

cos cos cos sin sin cos( )q p q p q p=   +    +  qp  

 

cos cos cos sin sin cos( )k p k p k p=   +    +  kp  

 

Taking into account the spherical symmetry of the distribution functions ( ) ( )j jf f p=p  and using 

 

cos cos ,q= qp      cos cos ,k= kp  

we finally obtain  
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2
5 2 2

3

0

2
( ) 2 cos

3 (2 )
p k k

g
D p k dk d f k p kp

m


 
 
 
 

  + +  
    

 

( ) ( )2 2 21 cos 2 (1 cos ) 2 cosq q

d
d k f k p kp

d

 
 
 
 


  − − + +  +


 qk qk  

 

 ( ) ( )2 2 21 cos 2 (1 cos ) 2 cos ,q

d
k f k p kp

d

  
  
    


+ + + + − 


qk qk  (A8) 

 

2
5 2 2

3

0

2
( ) 2 cos

(2 )
k k

g
A p k dk d f k p kp

m


 
 
 
 

  + +  
    

 

( )2 2 2cos cos 2 (1 cos ) 2 cosq q k

d
d k f k p kp

d

 
   
    

 


   −  − + + −


 qk qp  

 

 ( )2 2 2cos cos 2 (1 cos ) 2 cos .q k

d
k f k p kp

d

 
   
      


−  +  + + −


qk qp  (A9) 

 

Appendix B. Transformation of integral expressions in the case of the Gauss potential 
 

After substituting (10) into the integral expressions (7) and (8), we get  
 

2 6 2
5 2 20 0

2 7

0

( ) 2 cos
24

p k k

g mr v
D p k dk d f k p kp


 
 
 
 

  + +  
    

 

( ) 2 2 2 2 2

01 cos exp 8 (1 cos ) 2 cosq qd k r f k p kp
   

          

  − − − + +  + qk qk  

 

 ( ) 2 2 2 2 2

01 cos exp 8 (1 cos ) 2 cos ,qk r f k p kp
   

         

+ + − + + − qk qk  (B1) 

 

2 6 2
4 2 20 0

2 7

0

( ) 2 cos
8

k k

g mr v
A p k dk d f k p kp


 
 
 
 

  + +  
    

 

2 2 2 2 2

0cos cos exp 8 (1 cos ) 2 cosq q k qd k r f k p kp
    

            

   −  − − + +  − qk  

 

 2 2 2 2 2

0cos cos exp 8 (1 cos ) 2 cos .q k qk r f k p kp
    

             

−  +  − + + − qk  (B2) 

 

We introduce the notation 

cos ,q x =     cos ,k y =  

then 
1 12 6 2

5 2 20 0

2 7

0 1 1

( ) 2
24

p

g mr v
D p k dk dx dy f k p kpy


 
 
 
 

− −

 + + 
     

 

( )
2 2

2 2

0 0

1 (1 )(1 ) cos( )k q k qd d xy x y

 

   − − − −  +     

 

( )2 2 2 2 2

0exp 8 1 (1 )(1 ) cos( )k qk r xy x y
 
 
 
 

 − − − − −  +    

 

( )2 2 2 22 1 (1 )(1 ) cos( )k qf k p kpx xy x y
 
 
 
 

 + + + + + − −  +    

 

 ( )2 2 2 2 2 2 2

0exp 8 1 (1 )(1 ) cos( ) 2 ,k qk r xy x y f k p kpx
      

     

 − + + − −  +   + −  (B3)  
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1 1 2 22 6 2
4 2 2 2 20 0

2 7

0 1 1 0 0

( ) 2 ( ) 2
8

k q

g mr v
A p k dk dx dy f k p kpy d d x y f k p kpx

  
   

   
      

− −

 + +   − + + 
       

 

( )2 2 2 2 2 2 2

0exp 8 1 (1 )(1 ) cos( ) ( ) 2k qk r xy x y x y f k p kpx
   
   

  
  

 − − − − −  +  − + + −   

 

 ( )2 2 2 2 2

0exp 8 1 (1 )(1 ) cos( ) .k qk r xy x y
 
 

  

 − + + − −  +   (B4) 

 

Then 
 

1 12 6 2
5 2 2 2 2 2 2 20 0

02 7

0 1 1

( ) 2 exp 8 (1 ) 2
24

p

g mr v
D p k dk dx dy f k p kpy k r xy f k p kpx


     

            
− −

 + + − − + + 
     

 

( ) ( )
2 2

2 2 2 2 2 2 2

0

0 0

1 (1 )(1 ) cos( ) exp 8 (1 )(1 ) cos( )k q k q k qd d xy x y k r x y

 

   − − − −  +  − −  +  +   

 

( )
2 2

2 2 2 2 2 2 2

0

0 0

exp 8 (1 ) 2 1 (1 )(1 ) cos( )k q k qk r xy f k p kpx d d xy x y

 
  
       

+ − + + −   + + − −  +     

 

 ( )2 2 2 2 2

0exp 8 (1 )(1 ) cos( ) ,k qk r x y − − −  +   (B5) 

 
1 12 6 2

4 2 20 0

2 7

0 1 1

( ) 2
8

g mr v
A p k dk dx dy f k p kpy


 
 
 
 

− −

 + + 
     

 

2 2 2 2 2

0( ) 2 exp 8 (1 )x y f k p kpx k r xy
    

        

 − + + − −   

 

( )
2 2

2 2 2 2 2

0

0 0

exp 8 (1 )(1 ) cos( )k q k qd d k r x y

 

   − −  +  −   

 

2 2 2 2 2

0( ) 2 exp 8 (1 )x y f k p kpx k r xy
   
       

− + + − − +   

 

   ( )
2 2

2 2 2 2 2

0

0 0

exp 8 (1 )(1 ) cos( ) .k q k qd d k r x y

  
   − − −  +  


   (B6) 

 

To simplify, we introduce the following notation 
 

 2 2 2 2xq p k pkx = +  ,   
2 2 2 2 .yq p k pky = +   (B7) 

 

 2 2 2

0( ) 8 (1 ) ,k x y k r xy   =   (B8) 
 

 2 2 2 2 2

0( ) 8 (1 )(1 ) .k x y k r x y   = − −  (B9) 

 

Using the definition of modified Bessel functions of the first kind, we obtain for the integrals 
 

( ) ( )( ) ( )( )
2 2

2

0

0 0

exp , , cos 4 , , ,q k q kd d k x y I k x y

 

    +  =     

 

( ) ( ) ( )( ) ( )( )
2 2

2

1

0 0

cos exp , , cos 4 , , .q k q k q kd d k x y I k x y

 

   +    +  =     
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Then we will finally have 
 

1 12 6 2
50 0

7

0 1 1

( )
6

p y

g mr v
D p k dk dx dy f q



 
 + 

− −

     

 

 2 2

0 1exp( ( )) ( ) (1 ) ( ( )) (1 )(1 ) ( ( ))xk x y f q xy I k x y x y I k x y− +
  −   −    − − −    +
 

 

 

 2 2

0 1exp( ( )) ( ) (1 ) ( ( )) (1 )(1 ) ( ( )) ,xk x y f q xy I k x y x y I k x y+ −
 + −   + −   + − − −  
 

 (B10) 

 

1 12 6 2
40 0

7

0 1 1

( )
2

y

g mr v
A p k dk dx dy f q



 
 + 

− −

     

 

( ) ( ) ( ) 0( ) exp ( ) ( )xx y f q k x y I k x y+ − − −      −  

 

 ( ) ( ) ( )0( ) exp ( ) ( ) .xx y f q k x y I k x y− +− + −   −    (B11) 

 

Taking into account the symmetry properties of the modified Bessel functions of the first kind  
 

0 0( ) ( ),I I− =     1 1( ) ( ),I I− = −   

 

we will have 
 

1 12 6 2
50 0

7

0 1 1

( )
6

p y

g mr v
D p k dk dx dy f q



 
 + 

− −

     

 

 2 2

0 1exp( ( )) ( ) (1 ) ( ( )) (1 )(1 ) ( ( ))xk x y f q xy I k x y x y I k x y− +
  −   −    − − −    +
 

 

 

 2 2

0 1exp( ( )) ( ) (1 ) ( ( )) (1 )(1 ) ( ( )) ,xk x y f q xy I k x y x y I k x y+ −
 + −   +    − − −   
 

 (B12) 

 

( )
1 12 6 2

40 0
07

0 1 1

( ) ( )
2

y

g mr v
A p k dk dx dy f q I k x y



 
 + 

− −

        

 

 ( ) ( ) ( ) ( ) ( ) exp ( ) ( ) exp ( ) .x xx y f q k x y x y f q k x y+ − − + − −   − + −    (B13) 

 

When integrating over the variable x  in the second term in curly braces we make the replacement 

.x x→ −  Then, taking into account the symmetries ( ) ( )k x y k x y+ − −  =     and ( ) ( ),k x y k x y −  =    

we see that the second term is identical to the first. Therefore, we finally have  
 

1 12 6 2
50 0

7

0 1 1

( ) exp( ( )) ( ) ( )
3

p x y

g mr v
D p k dk dx dy k x y f q f q



− −

 −       

 

 
2 2

0 1(1 ) ( ( )) (1 )(1 ) ( ( )) ,xy I k x y x y I k x y  −    − − −   
 

 (B14) 

 

 ( )
1 12 6 2

40 0
07

0 1 1

( ) exp( ( )) ( ) ( )( ) ( ) ,x y

g mr v
A p k dk dx dy k x y f q f q x y I k x y



− −

 −   −       (B15) 

 

where ( ) ( ),k x y k x y−        ,x xq q+   .y yq q+    
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Appendix C. Expressions for the minimum and maximum values of integration limits 
 

max 1 max 2 max 3 1,x x x  = = =  min 1 min 2 min 3 1,x x x  = = = −  
 

max 1 1max( 1 min(1 ( ) ( ))),Fy z p z p

 = −     min 1 1,y  = −  
 

max 2 max( 1 min(1 ( ))),Fy z p = −    min 2 2min(1 max( 1 ( ))),y z p

 =  −   
 

max 3 2max( 1 min(1 ( ))),y z p = −    min 3 1min(1 max( 1 ( ))),y z p =  −   
 

max 4 max 5 max 6 1max( 1 min(1 ( ) ( ))),Fx x x z p z p

  = = = −     min 4 min 4 min 4 1,x x x  = = = −  
 

max 4 1max( 1 min(1 ( ) ( ))),Fy z p z p

 = −     min 4 1,y  = −  
 

max 5 max( 1 min(1 ( ))),Fy z p = −    min 5 2min(1 max( 1 ( ))),y z p

 =  −   
 

max 6 2max( 1 min(1 ( ))),y z p = −    min 6 1min(1 max( 1 ( ))),y z p =  −   
 

max 7 max 8 max 9 max( 1 min(1 ( ))),Fx x x z p  = = = −    min 7 min 8 min 9 2min(1 max( 1 ( ))),x x x z p

  = = =  −   
 

max 7 1max( 1 min(1 ( ) ( ))),Fy z p z p

 = −     min 7 1,y  = −  
 

max 8 max( 1 min(1 ( ))),Fy z p = −    min 8 2min(1 max( 1 ( ))),y z p

 =  −   
 

max 9 2max( 1 min(1 ( ))),y z p = −    min 9 1min(1 max( 1 ( ))),y z p =  −   
 

max 10 max 11 max 12 2max( 1 min(1 ( ))),x x x z p  = = = −    min 10 min 11 min 12 1min(1 max( 1 ( ))),x x x z p  = = =  −   
 

max 10 1max( 1 min(1 ( ) ( ))),Fy z p z p

 = −     min 10 1,y  = −  
 

max 11 max( 1 min(1 ( ))),Fy z p = −    min 11 2min(1 max( 1 ( ))),y z p

 =  −   
 

max 12 2max( 1 min(1 ( ))),y z p = −    min 12 1min(1 max( 1 ( ))).y z p =  −   
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ВЛАСТИВОСТІ КІНЕТИЧНИХ КОЕФІЦІЄНТІВ ДИФУЗІЇ ТА РУХЛИВОСТІ 

В ІМПУЛЬСНОМУ ПРОСТОРІ ДЛЯ ХОЛОДНОЇ ФЕРМІ-СИСТЕМИ 
 

Методами кінетичної теорії отримано вирази для коефіцієнтів дифузії та рухливості для холодної системи 

Фермі. Розраховано їхні залежності від імпульсу для східчастої функції розподілу, а також у випадку збудження 

пари «частинка - дірка». 
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