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MEAN-FIELD APPROXIMATION FOR FINITE NUCLEI AND NUCLEAR MATTER
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We discuss a realistic case of fitting the values of the Skyrme parameters to an extensive set of experimental data on
the ground-state properties of many nuclei ranging from normal to exotic ones. We include, in particular, the radii for
valence neutron orbits and the breathing-mode energies for several nuclei. We further constrain the values of the
Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor, x

associated with the isovector giant dipole resonance, and the Landau parameter G, . We also present results of Hartree-

Fock based random phase approximation for the excitation strength function of the breathing mode and discuss the
current status of the nuclear matter incompressibility coefficient.

1. Introduction

The nucleus is a fascinating and important
laboratory for the study of properties of strongly
interacting many body systems. Density functional
theory, which is based on a theorem [1] for the
existence of a universal energy density functional
(EDF) that depends on the densities of the
constituents and their derivatives, provides a
powerful approach for theoretical calculations of
properties of many body systems. However, the
main challenge is to find the EDF. An important task
of the nuclear physics community is to develop a
modern EDF which accounts for the effects of few
body and many body correlations and provides
enhanced predictive power for properties of rare
nuclei with unusual neutron-to-proton ratios that are
difficult to produce experimentally and likely to
exhibit interesting new phenomena associated with
effects of isospin, clusterization, and the continuum.

Starting from the EDF associated with the
Skyrme effective nucleon-nucleon interaction [2 -
6], we will present below a more realistic EDF with
improved predictive power for properties of nuclei at
and away from the valley of stability.

Since the pioneering work of Brink and
Vautherin [4], continuous efforts have been made to
readjust the parameters of the Skyrme-type effective
nucleon-nucleon (NN) interaction to better
reproduce experimental data [7]. Most of the
parameters of the Skyrme interactions available in
the literature were obtained by fitting the Hartree-
Fock (HF) results to experimental data on bulk
properties of a few stable closed-shell nuclei. Thus,
it is desirable to have a unified interaction which
includes the merits of several families of the Skyrme
interactions, as already mentioned. One can further
enhance the applicability of the Skyrme-type
effective nucleon-nucleon interaction by imposing
certain constraints, as subsequently discussed.
Adopting the standard parameterization of Skyrme
type interactions [4], we have recently determined
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within the Hartree - Fock (HF) approximation a new
and more realistic Skyrme interaction (named
KDEO) by fitting [8] a set of extensive data on
binding energies, "bare" single particle energies,
charge root mean square (rms) radii, and rms radii of
valence nucleon density distribution of nuclei. We
have included in the fit, for the first time, the data on
the constraint energies of the isoscalar giant
monopole resonances (ISGMR) of nuclei and
imposed additional constraints, such as a non-
negative value for the slope of the symmetry energy
density at high nuclear matter (NM) density (at three
times the saturation density of NM) and the Landau
stability constraints on nuclear matter. We have
implemented, for the first time, the simulated
annealing method (SAM) together with an advanced
least square method to search for the global minima.
We have organized our presentation as follows. In
Section 2 we briefly outline the form of the Skyrme
NN effective interaction and the corresponding
energy-density functional we have adopted in the
present work. In this section, we also provide
feasible strategies for the calculations Coulomb
displacement energy (CDE) and the center of mass
(CM) corrections to the total binding energy and
charge rms radii. In Section 3 we describe the SAM
algorithm. The set of the experimental data along
with the theoretical errors and the constraints used in
the fit to determine the values of the Skyrme
parameters are given in Section 4. In Section 5 we
present results for two different fits. In Section 6 we
present the results of Hartree - Fock (HF) based
random phase approximation (RPA) for the ISGMR
and discuss the value of the NM incompressibility
coefficient. In Section 7 we summarize our main
results and discuss the scope for the further
improvement of the EDF.

2. Skyrme energy density functional

We have adopted the following form for the
Skyrme type effective NN interaction [4]:
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where ¢, x;, a, and W, are the parameters of the
interaction and P is the spin exchange operator,

G.is the Pauli spin operator, k,, = —i(ﬁ1 —62)/2 ,
and k, =—i(§1 —62)/2. Here, the right and left

arrows indicate that the momentum operators act on
the right and on the left, respectively. The
corresponding mean-field Vyr and the total energy E
of the system are given by

5H

%
HF 5,0

, E= IH(r)d3 2)

respectively, where, the Skyrme energy-density
functional H(7), obtained using Eq. (1), is given by
[4, 5],

H=K+H,+H,+H,;+H, +H,+H_,+H

Coul >
3)
2

h . . .
where K =2—r is the kinetic-energy term, H, is
m

the zero-range term, H; is the density dependent
term, H,y is an effective-mass term, Hj, is a finite-
range term, F,, is a spin-orbit term, H, is a term that
is due to tensor coupling with spin and gradient and
Hc,, 1s the contribution to the energy-density that is
due to the Coulomb interaction. For the Skyrme
interaction of Eq. (1), we have
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Here, p=p, +p,, =17, +7, and J = J;+J, are the

1 1
g = —E(tlxl +t2x2)J2 +E(t1

particle number density, kinetic-energy density and
spin-density with p and n denoting the protons and
neutrons, respectively. Note that the additional
parameter x,, introduced in Eq. (8), allows us to
modify the isospin dependence of the spin-orbit
term. The value of #”/2m =20.734 MeV fm’ was
used in the calculations. We would like to emphasize
that the contributions from the spin-density term as
given by Eq. (9), which is ignored in many Skyrme
HF calculations were included in these calculations.
Although the contributions from Eq. (9) to the
binding energy and charge rms radii are not very
significant, they are very crucial for the calculation

of the Landau parameter G, .

2.1. Coulomb energy

The contribution to the energy-density Eq. (3)
from the Coulomb interaction can be written as a
sum of a direct and an exchange terms:

HCoul (7") = Hgi)rul(r) + HCaul (7") . (10)
For the direct term it is common to adopt the
expression

,,()

I" r ‘

HE, (=2 ¢p, P55 an

and for the corresponding exchange term to use the
Slater approximation:

HEW(N=-2p,( )[ 2 )}

It is very important to emphasize that the definitions
of Egs. (11) and (12) are not for the bona fide direct
and exchange terms since each of them includes the
contributions of the self-interaction term, which

(12)
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appear in opposite signs and cancel out in Eq. (10),

see Ref. [9].
We recall that within the mean-field
approximation, adjusted to reproduce the

experimental values of the charge rms radii, the
calculated CDE of analog states (obtained using Eq.
(10)) are smaller than the corresponding
experimental values by about 7 %. It was first shown
in Ref. [10] that this discrepancy, also known as the
Nolen - Schiffer anomaly [11], can be explained
when the contributions that are due to long-range
correlations (LRCs) and those due to the charge
symmetry breaking (CSB) in the NN interaction are
taken into account. We note that by neglecting the
term of Eq. (12), one neglects the bona fide
Coulomb exchange term together with the spurious
contribution of the self-interaction term. These
results in a contribution to CDE that is similar in
magnitude to the contributions obtained from the
LRC + CSB terms.

2.2. Center-of-mass corrections
to the binding energy and charge rms radii

The HF approach applied to finite nuclei violates
the translational invariance, introducing a spurious
CM motion. Thus, one must extract the contributions
of the CM motion to the binding energy B, rms radii
and other observables. To account for the CM
correction to the total binding energy, one must
subtract from it the so-called CM energy given as,

S
Eey=—(P
o 2mA< >

where, P = —ihz V, is the total linear momentum

(13)

operator.  Traditionally, one simplifies the
computation of Eq. (13) by taking into account only
the one-body parts of it, which can be easily

1 1 1] .
—e—{l——} in the
m m A

achieved by replacing

kinetic-energy term. In this case, the effects of
neglecting the two-body part of Eq. (13) are
compensated by renormalization of the force
parameters. This may induce in the forces an
incorrect trend with respect to A that becomes
visible in the nuclear matter properties. Thus an
appropriate and still simple scheme to evaluate
Eq. (13) is highly desirable.

A simple but more consistent scheme to evaluate
the energies of the CM was employed by adopting
the harmonic oscillator (HO) approximation

3 . .
E! = Zha), and determining the oscillator energy
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ho wusing the mean-square mass radii <r2>

calculated in the HF approach as

w3

where the sum runs over all the occupied single-
particle states for the protons and neutrons and N is
the oscillator quantum number. We emphasize that
this scheme is quite reliable even for the nuclei away
from the g -stability line, where the values of the

rms radii deviate from the 4" law.
The corresponding mean-square charge radius to
be fitted to the experimental data is obtained as

3 N
(o) =0 e =y 270, + 7 ),

+%(%)Z(2]‘+1)M (61), -

nljt

heo = (14)

(15)

where <r2 >,, and <r2>n are the mean-squared radii

of the proton and neutron charge distributions,
respectively. The second term in Eq. (15) is due to
the CM motion, with v =m®/#% being the HO size
parameter. The last term in Eq. (15) is due to the
electromagnetic spin-orbit effect. We wuse the

experimental value <r2> =—0.12 fm®> and the

(recent) experimental value <r2> =0.801 fm”.
P

2.3. Determination of the critical density

The Landau stability conditions of the NM are
given as [12]

4 >-Q2l+1), (16)

where A, stands for the Landau parameters F,,F,',G,

and G, for a given multipolarity /. Skyrme

interactions contain only monopolar and dipolar
contributions to the particle-hole interaction so that
all Landau parameters are zero for /> 1. Thus, there
are 12 different Landau parameters, i.e.,

F,,F ,G,and G, (I=0, 1) for the symmetric nuclear
matter and F",G"™ (I =0, 1) for the pure neutron
matter. The critical density p, is defined as the
maximum density beyond which at least one of the
Landau parameters does not satisfy Eq. (16).
Following Ref. [13], one can obtain the values of the
Landau parameters at any density for a given set of
the Skyrme parameters. We included the quantity
p,, in the fit.
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2.4. Breathing-mode energy

We have considered the fully self-consistent
values for the breathing-mode constraint energy,

defined as
E, = |2 (17)
m_;
where m; are the energy moments
m = [oS(e)do (18)
0
of the strength function
2
S(w) = Z\<n|F|o>\ Sw-w,) (19)

A
for the monopole operator F(r)= Z f(r), with
i=1
f(r) = *. The moments m_, and m, appearing in
Eq. (17) can be obtained using the constrained HF
(CHF) and the double commutator sum rule,
respectively [8], as
2
m, =2h—<r2> and

- m_, = li<r/12 >/1=0 , (20)

2dA

where

() =[rp(r)dr . 21)
In Eq. (20), <rf> = <d)l ‘rz |CI)1>; where @, being the

HF solution to the CHF Hamiltonian H —Af . The

experimental data for the constraint energy E, was
included in the fit.

3. Simulated annealing based algorithm for the
minimization of }’

We have implemented the simulated-annealing
method (SAM) to search for the global minimum of

the »° function as given by

1 (MM Y
2 — i i , 22
NN Zl:( - j (22)

1

where Ny and N, are the number of experimental
data points and the number of fitted parameters,

respectively, o, is the theoretical error, and M ;™ and

M!" are the experimental and the corresponding HF

theoretical values,

observable.

respectively, for a given

10

From the literature [7] one finds that the Skyrme
parameters vary over a wide range. Therefore, to
make the search process more efficient, we take
advantage of the fact that the Skyrme parameters can
be expressed in terms of the various quantities which
are related to the nuclear matter, since these nuclear
matter quantities are known empirically within 10 -
20 %. For convenience, we have defined a vector v
with the components as

v=(B/AK,,.p,,.m ImE,_J,LKx,G,.W,).(23)

Here B/AK,,,p,,.m /mE J,Lk,G,, and W,
are the binding energy per nucleon, NM
incompressibility coefficient, nuclear matter density,
effective mass, surface energy, symmetry energy
coefficient, the quantity which is related to the slope
of the symmetry energy coefficient
(L=3pdJ/dp), the enhancement factor in the

energy weighted sum rule (EWSR) of the isovector
giant dipole resonance (IVGDR), Landau parameter,
and the Skyrme spin-orbit parameter, respectively.

Once the vector v is known one can calculate the
values of all the Skyrme parameters. We have also
defined the vectors v, v and d. The vector v and v,
contain the lower and the upper limits of each of the
components of the vector v. The vector d represents
the maximum displacement allowed in a single step
for the components of the vector v. For a given set
of experimental data, we have implemented the
SAM algorithm using the following basic steps:

(1) Starting with a guess for the vector v we
calculate y° (say, y.,) using Eq. (22).

(i) We first use a uniform random number to
select a component v, of the vector v, and then the
randomly selected component v, is then assigned a
new value

v, > v +nd, (24)

where 7 is a uniform random number that lies

within the range of -1 to +1. The second step is
repeated until the new value of v, is found within its
allowed limits defined by v, and v;. We use this
modified v to generate a new set of Skyrme
parameters.

(ii1) We calculate the quantity

(lozld ~Ziew )/ T

P(y')=e , (25)
where y_ . is obtained by using the newly generated

set of the Skyrme parameters and T is an effective
temperature. The new set of Skyrme parameters is
accepted only if
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P(1*)> B, (26)

where £ is a uniform random number that lies

between 0 and 1. If the new Skyrme parameters are
accepted, it is called a "successful reconfiguration".

To search for the global minimum of > we begin

with some reasonable value of an effective
temperature T = T;. For a given T;, we repeat steps
(11) and (iii) for, say, 100N, reconfigurations, or for
10 N, successful reconfigurations, which ever comes
first. Then, we reduce the temperature by following
the Cauchy annealing schedule given by

T(k)=T,/ck (27)
where ¢ is a constant, which is taken to be a unity,
and k = 1; 2; 3; ... is the time index. We keep on
reducing the value of T by using Eq. (27) in the
subsequent steps until the effort to reduce the value

of y° further becomes sufficiently discouraging.

4. Experimental data and some constraints

In Table 1 we summarize the choice of the
experimental data. It must be noted that, in addition
to the typically used data on the binding energy,
charge rms radii and spin-orbit splitting, we have
also included in our fit the experimental data for the
rms radii of valence neutron orbits and the
breathing-mode constraint energies of several nuclei.
For the binding energy we have used in the fit the
error of 1.0 MeV except for the '“°Sn nuclei, in
which we have used 2.0 MeV since the binding
energy for the '“Sn nucleus is determined from
systematics. For the charge rms radii we have
adopted the theoretical error of 0.02 fm except for
the case of *°Ni nucleus. The charge rms radius for
the “°Ni nucleus is obtained from systematic and we
use the theoretical error of 0.04 fm. We considered
in the fit the experimental data for the spin-orbit
splittings for the 2p neutrons and protons in the **Ni
nucleus and the rms radii for the 1ds, and 1f;,
neutron orbits in 'O and *'Ca nuclei, respectively.
The theoretical error taken for the spin-orbit splitting
data is 0.2 MeV, and for the rms radii for the valence
neutron orbits the experimental error of 0.06 fm was
adopted. To be consistent with the way these valence
neutron radii are determined, the CM correction to
these data was not included. The experimental data
for the breathing-mode constraint energies EO for the
P7r, 115Sn, *Sm and *®Pb nuclei were included in
the fit with the theoretical error taken to be 0.5 MeV
for the *°Zr nucleus and 0.3 MeV for the other
nuclei. We have also included the critical density
p,, in the fit, assuming a value of 2.5 p, with an
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Table 1. Selected experimental data for the binding
energy B, charge rms radius r.,, rms radii of valence
neutron orbits r,, spin-orbit splitting S-O,
breathing-mode constraint energy E,, and critical
density p_ used in the fit to determine the parameters

of the Skyrme interaction

Properties Nuclei

B 16,240’ 34Si, 40,48Ca’ 48,56,68,78Ni, SSSI‘, 9OZI‘,
100.132g,, 208y,

Fon 160’ 40,48Ca’ SéNi, 8881‘, 9OZI‘, 208Pb
17

rv (Vlﬁ)'/Z ) o
41

n (V1f7/ 2 ) Ca

S-0 2p orbits in *°Ni

E, 07, 6.2, THg, 28py,

P.r Nuclear matter

error of 0.5 p,. Further the values of the Skyrme
parameters were constrained by requiring (i) a
positive slope for the symmetry energy density for
p<3p,, (i) x=0.1-0.5 and (ili)) G,>0 at
P = p, (see Ref. [8] for details).

5. Results and discussions

Two different fits were carried out [8] and are
named as (i) KDEO, in which only the Coulomb
direct term in the form of Eq. (11) is included; and
KDE, in which the direct as well as the Coulomb
exchange terms are included, Egs. (10) - (12). It was
found that T; = 1.25, along with the Cauchy
annealing schedule as given by expression (47),
yields reasonable values for the best-fit parameters.
To validate this approach the following checks were
made. Starting with the final values of the Skyrme
parameters obtained using the SAM, a minimization
of the value of y* using the Levenberg-Marquardt
(LM) method [14] was carried out. We plot in Fig. 1

the average value < 7 >T as a function of the inverse
of the control parameter T for the KDEO case. The
curves labeled v and vl represent the results

obtained from two different choices of the starting
values for the Skyrme parameters. The value of

< 7 >T is obtained by averaging over all the
successful reconfigurations for a given T. We see

from Fig. 1 that the wvalue of < ;(2>T shows a

remarkable decrease at initial stages and then
oscillates before saturating to a minimum value for

T < 0.05. The value of <;(2> at lower T is more or

less independent of the starting values for the
Skyrme parameters.
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Fig. 1. Variation of the average value of chi-square,
<;(2>T , as a function of the inverse of the control

parameter 7 for the KDEO interaction for the two different
choices of the starting parameters.

In Table 2 we give the values for the resulting

quantities characterizing the nuclear matter obtained
at the minimum value of the < ;(2> for the KDEO and

KDE Skyrme interactions. We also give in
parenthesis the values of the standard deviations for
the Skyrme parameters. The values of the standard
deviations on the parameters for the KDEO and KDE
interactions were determined by using the LM
method.

In Table 3 we present the results for the
deviations AB =B —B" and Ar, =1 -1 for
the values of the binding energy and charge rms
radii, respectively, obtained from the newly
generated KDEO and KDE interactions. One can
easily verify from Table 3 that in the case of the
KDE) interaction the magnitude of the deviations for
the binding energy for most nuclei are much less
than 0.5 %. The KDE interaction yields larger error
in the values of the binding energy (~ 0.6 - 1.0 %)
for the '°0, ®*Ni and '“Sn nuclei. We also see from
Table 3 that, except for the %0 and **Ca nuclei, the
deviations in the values of the charge rms radii for

Skyrme parameters

together with the wvarious

the KDEQO interaction are less than 0.5 %.

Table 2. The values of the Skyrme parameters and the corresponding physical quantities
of nuclear matter parameters for KDEQ and KDE interactions obtained by minimizing the < 12> .

The values in Parenthesis are the standard deviation for the corresponding Skyrme parameters

Parameter KDEO KDE
to(MeV.fm®) -2526.5110 (140.6256) -2532.8842 (115.3165)
t, (MeV.fm’) 430.9418 (16.6729) 403.7285 (27.6336)
t, (MeV.fm’) -398.3775 (27.3099) -394.5578 (14.2610)
ty (MeV_fm**®) 14235.5193 (680.7344) 14575.0234 (641.9932)
Xo 0.7583 (0.0655) 0.7707 (0.0579)
X -0.3087 (0.0165) -0.5229 (0.0298)
Xs -0.9495 (0.0179) -0.8956 (0.0270)
Xs 1.1445 (0.0862) 1.1716 (0.0767)
W, (MeV.fim’) 128.9649 (3.3258) 128.0572 (4.3943)
A 0.1676 (0.0163) 0.1690 (0.0144)
B/A (MeV) 16.11 15.99
Kom (MeV) 228.82 223.89
Pum 0.161 0.164
m*/m 0.72 0.76
E, (MeV) 17.91 17.98
J (MeV) 33.00 31.97
L (MeV) 4522 41.43
Kom 0.30 0.16
G, 0.05 0.03
pon 13 2.2

Table 4 shows that the results for the values of p,,, the values for the rms radii of valence neutron orbits,

the spin-orbit splittings and the breathing mode constraint energies, considered in the fits, are quite
reasonable for the two interactions considered here. It can be also seen from Table 4 that the fit to the
breathing-mode constraint energies are overall in reasonable agreement with the corresponding experimental

data.

12
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Table 3. Results for the total binding energy B (in MeV) and charge rms radii r, (in fm) for several nuclei.

Also given the corresponding derivations from the experimental values; AB=B“* —B" and Ar, =r" —r}

AB — Bexp _ Bth A}"‘h — n;xp _ I’;f:
Nuclei B KDEO KDE P KDEO KDE
10 127.620 0.394 1.011 2.730 -0.041 -0.039
20 168.384 -0.581 0.370
4Si 283.427 -0.656 0.060
“Ca 342.050 0.005 0.252 3.49 0.000 0.011
BCa 415.990 0.188 1.165 3.480 -0.021 -0.008
BNi 347.136 -1.437 -3.67
Ni 483.991 1.091 1.106 3.750 -0.018 0.000
N 590.408 0.169 0.539
7Ni 641.940 -0.252 0.763
8Sr 768.468 0.826 1.132 4219 -0.002 0.019
7 783.892 -0.127 -0.200 4.258 -0.008 0.013
1005 824.800 -3.664 -4.928
328n 1102.850 -0.422 -0.314
208pp 1636.430 0.945 -0.338 5.500 0.011 0.041
Table 4. Critical density rms radii of the valence neutron orbits, spin-orbit splitting (S-O),
and the breathing mode constraint energies. In the columns 3-4 we give the results obtained
from KDEO and KDE interaction respectively
Experimental KDEO KDE
Lo Po 2.5 2.5 2.1
r,(vld,)( fm) 3.36 3.42 3.41
r,(v1d,,,)( fim) 3.99 4.05 4.03
£,2p,,)—€,(2p;,)(MeV) 1.88 1.84 1.81
5,,(2p1/2)—5,,(2p3/2)(M5V) 183 164 163
E, "Zr 17.81 17.98 17.91
11651 15.90 16.42 16.36
4Sm 15.25 15.53 15.47
208pp, 14.18 13.64 13.60

6. Fully self-consistent HF based RPA

As an application of the newly determined KDEO
Skyrme interaction we now present results for the
response function for the ISGMR for several nuclei.

The basic theory for microscopic description of
different modes of giant resonances is the HF based
RPA [15,16]. Although this approach is
conceptually well understood, actual calculations
make compromises for reasons of simplicity or
numerical expense. Unfortunately, apart from some
fully self-consistent calculations, most of earlier
HF-RPA calculations are contaminated by self
consistent violations (SCV). It was pointed out [17]
that the SCV associated with the omission of the p-h
spin-orbit and Coulomb interactions may cause an
error in EO of the ISGMR which becomes larger
than 1 MeV, i.e. as large as 5 times the experimental
error. It is important to point out that neglecting the
p-h spin-orbit interaction in the RPA calculation
leads to an increase of EO of *®Pb by about
0.8 MeV, and therefore to an increase of ~ 30 MeV

SIAEPHA ®I3UKA TA EHEPI'ETHUKA Ne3 (25) 2008

in the value extracted for K,,. We thus explained the
discrepancy [18] in the value deduced for K, using
Skyrme type or Gogny type effective interactions.

In Fig. 2 we present the results of fully self-
consistent HF-based RPA calculations for the
ISGMR (breathing mode) for several nuclei using
the newly determined KDEO interaction. We also
show for comparison the results obtained using the
SGII [19] interaction. We add that recently we have
constructed the parameter set SK255 [20] of the
Skyrme interaction, having K,, = 255 MeV, which
yields for the ISGMR centroid energies EQ values
which are quite close to the relativistic mean field
based RPA (RRPA) results obtained using the NL3
interaction which is associated with K, = 272 MeV.
Moreover, for the SK255 parameter set, one finds a
good agreement with experimental data for EO for
all  the nuclei considered, provided, the
corresponding excitation energy ranges used in
determining EO are the same as those used in
obtaining the experimental data. We have thus
resolved the discrepancy in the extracted value of

13
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K,n within relativistic and non-relativistic models
[20] and conclude that the difference in the extracted
values of K, is mainly due to the differences in the
values of the symmetry energy coefficient J and its
slope L associated with these models (see also
Ref. [21]).
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Fig. 2. Fully self-consistent HF-RPA results for the
ISMGR strength functions of N7y, 115Gn, 144Sm, and 2%Pb
obtained using the interactions SGII and KDEO and
compared with the experimental data (cireles with error
bars) [28].

7. Conclusions

We have employed the SAM to fit the values of
the parameters of the Skyrme interaction. We have
fitted an extensive set of experimental data together
with a few additional constraints. The experimental
data set consists of the binding energies for 14 nuclei
ranging from the normal to exotic (proton- or
neutron-rich) ones, charge rms radii for 7 nuclei,
spin-orbit splittings for the 2p proton and neutron
orbits of the **Ni nucleus, and rms radii for 1ds, and
1f,, valence neutron orbits in the 'O and *Ca
nuclei, respectively. We have also included in the fit
the experimental data on the constraint energies of
the ISGMR and the critical density p, determined

from the stability conditions for the Landau
parameters. The additional constraints imposed on
the Skyrme parameters were: (i) the quantity
P=3p(dS/dp), which is directly related to the

slope of the symmetry energy S, must be positive for

14

densities up to 3 p,, a condition imposed by the

neutron star models [22]; (ii) the enhancement factor
i , associated with the EWSR for the isovector giant
dipole resonance, should lie in the range of 0.1 - 0.5;

and (iii) the Landau parameter G,, crucial for the

spin properties of finite nuclei and nuclear matter,
should be positive at p = p, .

Using these experimental data along with the
additional constraints, we have carried out two
different fits named as KDEO and KDE. The
corrections to the binding energy and charge rms
radii due to the CM motion were performed using
simple but consistent schemes. The selection of the
experimental data in conjugation with some
constraints ensures that these interactions can be
used to study the bulk ground-state properties of
nuclei ranging from the stable to the ones near the
proton and neutron drip lines, as well as the
properties of neutron stars.

We have also presented results of fully self-
consistent HF based RPA calculations of the ISGMR
strength function using the newly determined KDEO
Skyrme effective interactions and compared them
with those obtained using the SGII interactions. In
conclusion:

(1) We have presented a new Skyrme effective
interaction (KDEOQ) which should be applicable in
the study of ground state properties of nuclei,
ranging from stable to the ones near the drip lines, as
well as properties of neutron stars.

(i1) We have also find that (see the review in
Ref. [23]) that K, = 240 + 20 MeV. The uncertainty
of 20 MeV is mainly due to the uncertainty in the
value of J.

The effects on the binding energy and rms radii
due to correlations beyond mean-field [24, 26, 27]
can be included in the fit. These effects are, in
particular, important for the light nuclei. One may
also include in the spin-orbit splitting, the
contributions due to the electromagnetic spin-orbit
interaction [25] and properly account for the isospin
dependence of the spin-orbit interaction. Last but not
least, one may also include the experimental data on
the giant dipole and quadrupole resonances while
fitting the Skyrme parameters in addition to the
breathing-mode energy, as was done in the present
work.
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HABJIWKEHHSI CEPEJIHBOI'O I1OJISI B CKIHUEHUX SAPAX TA HI[EPHIﬁ MATEPII
1. laomo

OOroBOpro€ThCS MiArOHKA MapameTpiB cmin CKipMa, BUXOASYH 3 €KCIEPHUMEHTAIBHUX JaHUX Ui OCHOBHOTO CTaHy
HOpPMaJIBHUX Ta €K30THYHUX sjep. 30KpeMa, Uil IMiATOHKM BHUKOPHCTaHO 3HAYEHHS pajiyciB OpOIT BaJCHTHHX
HEUTPOHIB Ta CHEPriii MPOIMXOBUX MOJ KinbKoX saep. Ha 3madenHs mapamerpiB Ckipma HaKIaJeHO IOAATKOBI
oOMe)XeHHS, 3YMOBIICHI BHMOTOIO0 TO3HTHBHOCTI HAXWIy eHeprii cumerpii S, koedimieHTa MiACHICHHA K, IO
TOB’sI3aHKH 3 TIraHTCHLKMM JIMTIONBHUM pEe30HaHCOM, Ta napametpa Jlannay G,. HaBeneHo pesy/bTaTd po3paxyHKy
crioBoi (QyHKIIT 30y/KeHHS MPOXMXOBOI MOJAM B paMmkax Teopii Xaprpi- Poka 3 BHUKOPUCTAHHSIM HaOIKEHHS
BUNAKOBUX (ha3. OOroBOPIOETHCS CTaH JAOCIIIKEHb MOIYJIsl CTUCHEHHSI SIIEPHOT MaTepii.

NPUBJINXEHUE CPEJHEI'O MMOJISI B KOHEYUHBIX SJIPAX U HI{EPHOFI MATEPHUHA
M. laomo

OOcyxmaeTcst TOArOHKA mHapameTpoB cuin CKHpMa Ha OCHOBE OKCIEPHMEHTANBHBIX NAHHBIX AT OCHOBHOTO
COCTOSIHMSI HOPMAJbHBIX M 3K30THYECKUX sJep. B dacTHOCTH, NmpH NMOATOHKE MCIONB30BAHBl BEIMUMHBI PaJyCcOB
OpOUT BaJICHTHBIX HEHTPOHOB M SHEPrUM JBIXAaTENBHBIX MOJ HECKOJNBKUX sijep. Ha BemumuuHbl mapamerpoB Ckupma
OBUTM HaJIOXKEHBl OTPAHWYEHHs, OOYCJOBJIEHHbIE TPeOOBAaHHEM IOJIOKUTEIBHBIX 3HAYEHUH HAKJIOHA DHEPrHU
cuMMeTpuu S, k03 PHULIMEeHTa YCUIICHUS K , CBI3aHHOTO C TUT@HTCKUM JIUIIOJIHBIM PE30HAHCOM, U Mapamerpa Jlannay

G, . TlpeacTaBieHsl pe3ynbTaThl pacyeTa CHIOBOH (YHKIMH BO30YXKIEHUs IBIXATENHHONH MOJIBI B PAMKAX TEOPUH

Xaptpu - Doka ¢ UCHOIB30BaHUEM TPUOIIDKEHMS CIydaiiHbIX (a3. OOcykaaeTcss COCTOSHUE WCCIEAOBAaHUA MOMYIIS
CXKaTHsl SIIEpHON MaTEPUU.
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