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We discuss a realistic case of fitting the values of the Skyrme parameters to an extensive set of experimental data on 

the ground-state properties of many nuclei ranging from normal to exotic ones. We include, in particular, the radii for 
valence neutron orbits and the breathing-mode energies for several nuclei. We further constrain the values of the 
Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor, κ  
associated with the isovector giant dipole resonance, and the Landau parameter '

0G . We also present results of Hartree-
Fock based random phase approximation for the excitation strength function of the breathing mode and discuss the 
current status of the nuclear matter incompressibility coefficient. 

 
1. Introduction 

 
The nucleus is a fascinating and important 

laboratory for the study of properties of strongly 
interacting many body systems. Density functional 
theory, which is based on a theorem [1] for the 
existence of a universal energy density functional 
(EDF) that depends on the densities of the 
constituents and their derivatives, provides a 
powerful approach for theoretical calculations of 
properties of many body systems. However, the 
main challenge is to find the EDF. An important task 
of the nuclear physics community is to develop a 
modern EDF which accounts for the effects of few 
body and many body correlations and provides 
enhanced predictive power for properties of rare 
nuclei with unusual neutron-to-proton ratios that are 
difficult to produce experimentally and likely to 
exhibit interesting new phenomena associated with 
effects of isospin, clusterization, and the continuum. 

Starting from the EDF associated with the 
Skyrme effective nucleon-nucleon interaction [2 - 
6], we will present below a more realistic EDF with 
improved predictive power for properties of nuclei at 
and away from the valley of stability. 

Since the pioneering work of Brink and 
Vautherin [4], continuous efforts have been made to 
readjust the parameters of the Skyrme-type effective 
nucleon-nucleon (NN) interaction to better 
reproduce experimental data [7]. Most of the 
parameters of the Skyrme interactions available in 
the literature were obtained by fitting the Hartree-
Fock (HF) results to experimental data on bulk 
properties of a few stable closed-shell nuclei. Thus, 
it is desirable to have a unified interaction which 
includes the merits of several families of the Skyrme 
interactions, as already mentioned. One can further 
enhance the applicability of the Skyrme-type 
effective nucleon-nucleon interaction by imposing 
certain constraints, as subsequently discussed. 
Adopting the standard parameterization of Skyrme 
type interactions [4], we have recently determined 

within the Hartree - Fock (HF) approximation a new 
and more realistic Skyrme interaction (named 
KDE0) by fitting [8] a set of extensive data on 
binding energies, "bare" single particle energies, 
charge root mean square (rms) radii, and rms radii of 
valence nucleon density distribution of nuclei. We 
have included in the fit, for the first time, the data on 
the constraint energies of the isoscalar giant 
monopole resonances (ISGMR) of nuclei and 
imposed additional constraints, such as a non-
negative value for the slope of the symmetry energy 
density at high nuclear matter (NM) density (at three 
times the saturation density of NM) and the Landau 
stability constraints on nuclear matter. We have 
implemented, for the first time, the simulated 
annealing method (SAM) together with an advanced 
least square method to search for the global minima. 
We have organized our presentation as follows. In 
Section 2 we briefly outline the form of the Skyrme 
NN effective interaction and the corresponding 
energy-density functional we have adopted in the 
present work. In this section, we also provide 
feasible strategies for the calculations Coulomb 
displacement energy (CDE) and the center of mass 
(CM) corrections to the total binding energy and 
charge rms radii. In Section 3 we describe the SAM 
algorithm. The set of the experimental data along 
with the theoretical errors and the constraints used in 
the fit to determine the values of the Skyrme 
parameters are given in Section 4. In Section 5 we 
present results for two different fits. In Section 6 we 
present the results of Hartree - Fock (HF) based 
random phase approximation (RPA) for the ISGMR 
and discuss the value of the NM incompressibility 
coefficient. In Section 7 we summarize our main 
results and discuss the scope for the further 
improvement of the EDF. 

 
2. Skyrme energy density functional 

 
We have adopted the following form for the 

Skyrme type effective NN interaction [4]: 
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where ti, xi, α , and W0 are the parameters of the 
interaction and 12Pσ  is the spin exchange operator, 

iσ is the Pauli spin operator, ( )12 1 2 / 2k i= − ∇ −∇ , 

and ( )12 1 2 / 2k i= − ∇ −∇ . Here, the right and left 

arrows indicate that the momentum operators act on 
the right and on the left, respectively. The 
corresponding mean-field VHF and the total energy E 
of the system are given by 

 

,HF
HV δ
δρ

=  3( ) ,E H r d r= ∫            (2) 

 
respectively, where, the Skyrme energy-density 
functional H(r), obtained using Eq. (1), is given by 
[4, 5], 

 

0 3 eff fin so sg CoulH K H H H H H H H= + + + + + + + , 
(3) 

where 
2

2
K

m
τ=  is the kinetic-energy term, H0 is 

the zero-range term, H3 is the density dependent 
term, Heff is an effective-mass term, Hfin is a finite-
range term, Hso is a spin-orbit term, Hsg is a term that 
is due to tensor coupling with spin and gradient and 
HCoul is the contribution to the energy-density that is 
due to the Coulomb interaction. For the Skyrme 
interaction of Eq. (1), we have 

 

( ) ( ) ( )2 2 2
0 0 0 0

1 2 2 1
4 p nH t x xρ ρ ρ⎡ ⎤= + − + +⎣ ⎦ ,  (4) 

 

( ) ( ) ( )2 2 2
3 3 3 3

1 2 2 1
24 p nH t x xαρ ρ ρ ρ⎡ ⎤= + − + +⎣ ⎦ , (5) 

 

( ) ( )1 1 2 2
1 2 2
8effH t x t x τρ= + + + +⎡ ⎤⎣ ⎦  

(6) 

( ) ( ) ( )2 2 1 1
1 2 1 2 1
8 p p n nt x t x τ ρ τ ρ+ + − + +⎡ ⎤⎣ ⎦ ,  

 

( ) ( ) ( )2
1 1 2 2

1 3 2 2
32finH t x t x ρ= + − + ∇ −⎡ ⎤⎣ ⎦  

(7) 

( ) ( ) ( ) ( )2 2
1 1 2 2

1 3 2 1 2 1
32 p nt x t x ρ ρ⎡ ⎤− + + + ∇ + ∇⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

, 

( )0 .
2so w p p n n

W
H J x J Jρ ρ ρ⎡ ⎤= ⋅∇ + ∇ + ⋅∇⎣ ⎦    (8) 

and 

( ) ( )2 2 2
1 1 2 2 1 2

1 1 .
16 16sg p nH t x t x J t t J J⎡ ⎤= − + + − +⎣ ⎦  

(9) 
Here, p nρ ρ ρ= + , n nτ τ τ= +  and J = Jp+Jn are the 
particle number density, kinetic-energy density and 
spin-density with p and n denoting the protons and 
neutrons, respectively. Note that the additional 
parameter xw, introduced in Eq. (8), allows us to 
modify the isospin dependence of the spin-orbit 
term. The value of 2 / 2 20.734m =  MeV fm2 was 
used in the calculations. We would like to emphasize 
that the contributions from the spin-density term as 
given by Eq. (9), which is ignored in many Skyrme 
HF calculations were included in these calculations. 
Although the contributions from Eq. (9) to the 
binding energy and charge rms radii are not very 
significant, they are very crucial for the calculation 
of the Landau parameter '

0G . 
 

2.1. Coulomb energy 
 

The contribution to the energy-density Eq. (3) 
from the Coulomb interaction can be written as a 
sum of a direct and an exchange terms: 

 

( ) ( ) ( )dir ex
Coul Coul CoulH r H r H r= + .          (10) 

 
For the direct term it is common to adopt the 
expression 

 
' 3 '
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and for the corresponding exchange term to use the 
Slater approximation: 

 
1/ 3

2 3 ( )3( ) ( )
4

pex
Coul p

r
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π
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It is very important to emphasize that the definitions 
of Eqs. (11) and (12) are not for the bona fide direct 
and exchange terms since each of them includes the 
contributions of the self-interaction term, which 
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appear in opposite signs and cancel out in Eq. (10), 
see Ref. [9]. 

We recall that within the mean-field 
approximation, adjusted to reproduce the 
experimental values of the charge rms radii, the 
calculated CDE of analog states (obtained using Eq. 
(10)) are smaller than the corresponding 
experimental values by about 7 %. It was first shown 
in Ref. [10] that this discrepancy, also known as the 
Nolen - Schiffer anomaly [11], can be explained 
when the contributions that are due to long-range 
correlations (LRCs) and those due to the charge 
symmetry breaking (CSB) in the NN interaction are 
taken into account. We note that by neglecting the 
term of Eq. (12), one neglects the bona fide 
Coulomb exchange term together with the spurious 
contribution of the self-interaction term. These 
results in a contribution to CDE that is similar in 
magnitude to the contributions obtained from the 
LRC + CSB terms. 

 
2.2. Center-of-mass corrections  

to the binding energy and charge rms radii 
 

The HF approach applied to finite nuclei violates 
the translational invariance, introducing a spurious 
CM motion. Thus, one must extract the contributions 
of the CM motion to the binding energy B, rms radii 
and other observables. To account for the CM 
correction to the total binding energy, one must 
subtract from it the so-called CM energy given as, 

 
21

2CME P
mA

∧

=                           (13) 

 

where, iP i= − ∇∑  is the total linear momentum 

operator. Traditionally, one simplifies the 
computation of Eq. (13) by taking into account only 
the one-body parts of it, which can be easily 

achieved by replacing 1 1 11
m m A

⎡ ⎤→ −⎢ ⎥⎣ ⎦
 in the 

kinetic-energy term. In this case, the effects of 
neglecting the two-body part of Eq. (13) are 
compensated by renormalization of the force 
parameters. This may induce in the forces an 
incorrect trend with respect to A that becomes 
visible in the nuclear matter properties. Thus an 
appropriate and still simple scheme to evaluate 
Eq. (13) is highly desirable. 

A simple but more consistent scheme to evaluate 
the energies of the CM was employed by adopting 
the harmonic oscillator (HO) approximation 

3
4

HO
CME ω= , and determining the oscillator energy 

ω  using the mean-square mass radii 2r  

calculated in the HF approach as 
 

2

2

3
2i

i

N
mA r

ω ⎡ ⎤= +⎢ ⎥⎣ ⎦
∑ ,            (14) 

 
where the sum runs over all the occupied single-
particle states for the protons and neutrons and Ni is 
the oscillator quantum number. We emphasize that 
this scheme is quite reliable even for the nuclei away 
from the β -stability line, where the values of the 
rms radii deviate from the A1/3 law. 

The corresponding mean-square charge radius to 
be fitted to the experimental data is obtained as 

 

2 2 2 23
2ch p HF p n

Nr r r r
A Zν

= − + + +  

 

1 (2 1) .
lj

nlj

j l
Z mc τ

τ

µ σ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑ ,             (15) 

 

where 2

p
r  and 2

n
r  are the mean-squared radii 

of the proton and neutron charge distributions, 
respectively. The second term in Eq. (15) is due to 
the CM motion, with /mν ω=  being the HO size 
parameter. The last term in Eq. (15) is due to the 
electromagnetic spin-orbit effect. We use the 
experimental value 2 0.12

n
r = −  fm2 and the 

(recent) experimental value 2 0.801
p

r =  fm2. 
 

2.3. Determination of the critical density  
 

The Landau stability conditions of the NM are 
given as [12] 

 

(2 1)lA l> − + ,                   (16) 
 

where Al stands for the Landau parameters ', ,l l lF F G  
and '

lG  for a given multipolarity l. Skyrme 
interactions contain only monopolar and dipolar 
contributions to the particle-hole interaction so that 
all Landau parameters are zero for l > 1. Thus, there 
are 12 different Landau parameters, i.e., 

', ,l l lF F G and '
lG  (l = 0, 1) for the symmetric nuclear 

matter and ( ) ( ),n n
l lF G  (l = 0, 1) for the pure neutron 

matter. The critical density crρ  is defined as the 
maximum density beyond which at least one of the 
Landau parameters does not satisfy Eq. (16). 
Following Ref. [13], one can obtain the values of the 
Landau parameters at any density for a given set of 
the Skyrme parameters. We included the quantity 

crρ  in the fit. 
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2.4. Breathing-mode energy  
 

We have considered the fully self-consistent 
values for the breathing-mode constraint energy, 
defined as 

 

1
0

1

mE
m−

= ,                            (17) 

 
where mk are the energy moments 

 

0

( )km S dω ω ω
∞

= ∫                   (18) 

 
of the strength function 
 

2
( ) 0 ( )n

n
S n Fω δ ω ω= −∑            (19) 

 

for the monopole operator 
1

( ) ( )
A

i
i

F r f r
=

= ∑ , with 

f(r) = r2. The moments m-1 and m1 appearing in 
Eq. (17) can be obtained using the constrained HF 
(CHF) and the double commutator sum rule, 
respectively [8], as 

 
2

2
1 2m r

m
=      and      2

1 0

1
2

dm r
d λ λλ− =

= ,   (20) 

 
where 

 
2 2 ( )r r r drρ= ∫ .                  (21) 

 

In Eq. (20), 2 2Φ Φr rλ λ λ= ; where Φλ  being the 

HF solution to the CHF Hamiltonian H fλ− . The 
experimental data for the constraint energy E0 was 
included in the fit. 

 
3. Simulated annealing based algorithm for the 

minimization of 2χ  
 

We have implemented the simulated-annealing 
method (SAM) to search for the global minimum of 
the 2χ  function as given by 

 
2exp

2

1

1 ,
d thN

i i

id p i

M M
N N

χ
σ=

⎛ ⎞−
= ⎜ ⎟− ⎝ ⎠

∑         (22) 

 

where Nd and Np are the number of experimental 
data points and the number of fitted parameters, 
respectively, iσ is the theoretical error, and exp

iM and 
th
iM  are the experimental and the corresponding HF 

theoretical values, respectively, for a given 
observable.  

From the literature [7] one finds that the Skyrme 
parameters vary over a wide range. Therefore, to 
make the search process more efficient, we take 
advantage of the fact that the Skyrme parameters can 
be expressed in terms of the various quantities which 
are related to the nuclear matter, since these nuclear 
matter quantities are known empirically within 10 - 
20 %. For convenience, we have defined a vector v 
with the components as 

 

( )* '
0 0/ , , , / , , , , , ,nm nm sv B A K m m E J L G Wρ κ≡ . (23) 

 

Here * '
0/ , , , / , , , , , ,nm nm sB A K m m E J L Gρ κ  and 0W  

are the binding energy per nucleon, NM 
incompressibility coefficient, nuclear matter density, 
effective mass, surface energy, symmetry energy 
coefficient, the quantity which is related to the slope 
of the symmetry energy coefficient 
( 3 /L dJ dρ ρ= ), the enhancement factor in the 
energy weighted sum rule (EWSR) of the isovector 
giant dipole resonance (IVGDR), Landau parameter, 
and the Skyrme spin-orbit parameter, respectively.  

Once the vector v is known one can calculate the 
values of all the Skyrme parameters. We have also 
defined the vectors v0, v1 and d. The vector v0 and v1 
contain the lower and the upper limits of each of the 
components of the vector v. The vector d represents 
the maximum displacement allowed in a single step 
for the components of the vector v. For a given set 
of experimental data, we have implemented the 
SAM algorithm using the following basic steps: 

(i) Starting with a guess for the vector v we 
calculate 2χ  (say, 2

oldχ ) using Eq. (22). 
(ii) We first use a uniform random number to 

select a component vr of the vector v, and then the 
randomly selected component vr is then assigned a 
new value 

 

r r rv v dη→ +                          (24) 
 

where η  is a uniform random number that lies 
within the range of -1 to +1. The second step is 
repeated until the new value of vr is found within its 
allowed limits defined by v0 and v1. We use this 
modified v to generate a new set of Skyrme 
parameters. 

(iii) We calculate the quantity 
 

( ) ( )2 2 /2 ,old new TP e χ χχ −
=                    (25) 

 

where 2
newχ  is obtained by using the newly generated 

set of the Skyrme parameters and T is an effective 
temperature. The new set of Skyrme parameters is 
accepted only if 
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( )2 ,P χ β>                                  (26) 
 

where β  is a uniform random number that lies 
between 0 and 1. If the new Skyrme parameters are 
accepted, it is called a "successful reconfiguration". 
To search for the global minimum of 2χ  we begin 
with some reasonable value of an effective 
temperature T = Ti. For a given Ti, we repeat steps 
(ii) and (iii) for, say, 100Np reconfigurations, or for 
10 Np successful reconfigurations, which ever comes 
first. Then, we reduce the temperature by following 
the Cauchy annealing schedule given by 
 

( ) /iT k T ck=                         (27) 
 

where c is a constant, which is taken to be a unity, 
and k = 1; 2; 3; … is the time index. We keep on 
reducing the value of T by using Eq. (27) in the 
subsequent steps until the effort to reduce the value 
of 2χ  further becomes sufficiently discouraging. 

 
4. Experimental data and some constraints 

 
In Table 1 we summarize the choice of the 

experimental data. It must be noted that, in addition 
to the typically used data on the binding energy, 
charge rms radii and spin-orbit splitting, we have 
also included in our fit the experimental data for the 
rms radii of valence neutron orbits and the 
breathing-mode constraint energies of several nuclei. 
For the binding energy we have used in the fit the 
error of 1.0 MeV except for the 100Sn nuclei, in 
which we have used 2.0 MeV since the binding 
energy for the 100Sn nucleus is determined from 
systematics. For the charge rms radii we have 
adopted the theoretical error of 0.02 fm except for 
the case of 56Ni nucleus. The charge rms radius for 
the 56Ni nucleus is obtained from systematic and we 
use the theoretical error of 0.04 fm. We considered 
in the fit the experimental data for the spin-orbit 
splittings for the 2p neutrons and protons in the 56Ni 
nucleus and the rms radii for the 1d5/2 and 1f7/2 
neutron orbits in 17O and 41Ca nuclei, respectively. 
The theoretical error taken for the spin-orbit splitting 
data is 0.2 MeV, and for the rms radii for the valence 
neutron orbits the experimental error of 0.06 fm was 
adopted. To be consistent with the way these valence 
neutron radii are determined, the CM correction to 
these data was not included. The experimental data 
for the breathing-mode constraint energies E0 for the 
90Zr, 116Sn, 144Sm and 208Pb nuclei were included in 
the fit with the theoretical error taken to be 0.5 MeV 
for the 90Zr nucleus and 0.3 MeV for the other 
nuclei. We have also included the critical density 

crρ  in the fit, assuming a value of 2.5 0ρ  with an 

Table 1. Selected experimental data for the binding 
energy B, charge rms radius rch, rms radii of valence 
neutron orbits rv, spin-orbit splitting S-O, 
breathing-mode constraint energy E0, and critical 
density crρ used in the fit to determine the parameters 
of the Skyrme interaction 

 
Properties Nuclei 

B 
16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 
100,132Sn, 208Pb 

rch 16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 208Pb 

5/ 2( 1 )vr fν  17O 

7 / 2( 1 )vr fν  41Ca 
S-O 2p orbits in 56Ni 
E0 90Zr, 116,132Sn, 144Sm, 208Pb 

crρ  Nuclear matter 
 
error of 0.5 0ρ . Further the values of the Skyrme 
parameters were constrained by requiring (i) a 
positive slope for the symmetry energy density for 

03ρ ρ≤ , (ii) 0.1 0.5κ = −  and (iii) '
0 0G ≥  at 

0ρ ρ=  (see Ref. [8] for details). 
 

5. Results and discussions 
 

Two different fits were carried out [8] and are 
named as (i) KDE0, in which only the Coulomb 
direct term in the form of Eq. (11) is included; and 
KDE, in which the direct as well as the Coulomb 
exchange terms are included, Eqs. (10) - (12). It was 
found that Ti = 1.25, along with the Cauchy 
annealing schedule as given by expression (47), 
yields reasonable values for the best-fit parameters. 
To validate this approach the following checks were 
made. Starting with the final values of the Skyrme 
parameters obtained using the SAM, a minimization 
of the value of 2χ  using the Levenberg-Marquardt 
(LM) method [14] was carried out. We plot in Fig. 1 
the average value 2

T
χ  as a function of the inverse 

of the control parameter T for the KDE0 case. The 
curves labeled v and v1 represent the results 
obtained from two different choices of the starting 
values for the Skyrme parameters. The value of 

2

T
χ  is obtained by averaging over all the 

successful reconfigurations for a given T. We see 
from Fig. 1 that the value of 2

T
χ  shows a 

remarkable decrease at initial stages and then 
oscillates before saturating to a minimum value for 
T ≤ 0.05. The value of 2χ  at lower T is more or 

less independent of the starting values for the 
Skyrme parameters. 
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Fig. 1. Variation of the average value of chi-square, 

2 Тχ , as a function of the inverse of the control 
parameter T for the KDE0 interaction for the two different 
choices of the starting parameters. 
 

In Table 2 we give the values for the resulting 
Skyrme parameters together with the various  
 

quantities characterizing the nuclear matter obtained 
at the minimum value of the 2χ  for the KDE0 and 

KDE Skyrme interactions. We also give in 
parenthesis the values of the standard deviations for 
the Skyrme parameters. The values of the standard 
deviations on the parameters for the KDE0 and KDE 
interactions were determined by using the LM 
method. 

In Table 3 we present the results for the 
deviations exp∆ thB B B= −  and exp exp∆ ch ch chr r r= −  for 
the values of the binding energy and charge rms 
radii, respectively, obtained from the newly 
generated KDE0 and KDE interactions. One can 
easily verify from Table 3 that in the case of the 
KDE) interaction the magnitude of the deviations for 
the binding energy for most nuclei are much less 
than 0.5 %. The KDE interaction yields larger error 
in the values of the binding energy (~ 0.6 - 1.0 %) 
for the 16O, 48Ni and 100Sn nuclei. We also see from 
Table 3 that, except for the 16O and 48Ca nuclei, the 
deviations in the values of the charge rms radii for 
the KDE0 interaction are less than 0.5 %. 

Table 2. The values of the Skyrme parameters and the corresponding physical quantities  
of nuclear matter parameters for KDE0 and KDE interactions obtained by minimizing the 2χ .  
The values in Parenthesis are the standard deviation for the corresponding Skyrme parameters 

 
Parameter KDE0 KDE 

t0(MeV.fm3) -2526.5110 (140.6256) -2532.8842 (115.3165) 
t1 (MeV.fm5) 430.9418 (16.6729) 403.7285 (27.6336) 
t2 (MeV.fm5) -398.3775 (27.3099) -394.5578 (14.2610) 
t3 (MeV_fm3(1+α)) 14235.5193 (680.7344) 14575.0234 (641.9932) 
x0 0.7583 (0.0655) 0.7707 (0.0579) 
x1 -0.3087 (0.0165) -0.5229 (0.0298) 
x2 -0.9495 (0.0179) -0.8956 (0.0270) 
x3 1.1445 (0.0862) 1.1716 (0.0767) 
W0 (MeV.fm5) 128.9649 (3.3258) 128.0572 (4.3943) 
Α 0.1676 (0.0163) 0.1690 (0.0144) 
B/A (MeV) 16.11 15.99 
Knm (MeV) 228.82 223.89 
ρnm 0.161 0.164 
m*/m 0.72 0.76 
Es (MeV) 17.91 17.98 
J (MeV) 33.00 31.97 
L (MeV) 45.22 41.43 
Knm 0.30 0.16 

'
0G  0.05 0.03 
2
minχ  1.3 2.2 

 
Table 4 shows that the results for the values of crρ , the values for the rms radii of valence neutron orbits, 

the spin-orbit splittings and the breathing mode constraint energies, considered in the fits, are quite 
reasonable for the two interactions considered here. It can be also seen from Table 4 that the fit to the 
breathing-mode constraint energies are overall in reasonable agreement with the corresponding experimental 
data. 
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Table 3. Results for the total binding energy B (in MeV) and charge rms radii rch (in fm) for several nuclei.  
Also given the corresponding derivations from the experimental values; exp∆ thB B B= −  and exp∆ th

ch ch chr r r= −  
 

  exp∆ thB B B= −   exp∆ th
ch ch chr r r= −  

Nuclei Bexp KDE0 KDE rexp KDE0 KDE 
16O 127.620 0.394 1.011 2.730 -0.041 -0.039 
24O 168.384 -0.581 0.370    
34Si 283.427 -0.656 0.060    
40Ca 342.050 0.005 0.252 3.49 0.000 0.011 
48Ca 415.990 0.188 1.165 3.480 -0.021 -0.008 
48Ni 347.136 -1.437 -3.67    
56Ni 483.991 1.091 1.106 3.750 -0.018 0.000 
68Ni 590.408 0.169 0.539    
78Ni 641.940 -0.252 0.763    
88Sr 768.468 0.826 1.132 4.219 -0.002 0.019 
90Zr 783.892 -0.127 -0.200 4.258 -0.008 0.013 
100Sn 824.800 -3.664 -4.928    
132Sn 1102.850 -0.422 -0.314    
208Pb 1636.430 0.945 -0.338 5.500 0.011 0.041 

 
Table 4. Critical density rms radii of the valence neutron orbits, spin-orbit splitting (S-O),  

and the breathing mode constraint energies. In the columns 3-4 we give the results obtained  
from KDE0 and KDE interaction respectively 

 
 Experimental KDE0 KDE 

0/crρ ρ  2.5 2.5 2.1 

5/2( 1 )( )vr d fmν  3.36 3.42 3.41 

7/2( 1 )( )vr d fmν  3.99 4.05 4.03 

1/2 3/2(2 ) (2 )( )n np p MeVε ε−  1.88 1.84 1.81 

1/2 3/2(2 ) (2 )( )p pp p MeVε ε−  1.83 1.64 1.63 
E0  90Zr 17.81 17.98 17.91 
      116Sn 15.90 16.42 16.36 
      144Sm 15.25 15.53 15.47 
      208Pb 14.18 13.64 13.60 

 
6. Fully self-consistent HF based RPA 

 
As an application of the newly determined KDE0 

Skyrme interaction we now present results for the 
response function for the ISGMR for several nuclei.  

The basic theory for microscopic description of 
different modes of giant resonances is the HF based 
RPA [15, 16]. Although this approach is 
conceptually well understood, actual calculations 
make compromises for reasons of simplicity or 
numerical expense. Unfortunately, apart from some 
fully self-consistent calculations, most of earlier 
HF-RPA calculations are contaminated by self 
consistent violations (SCV). It was pointed out [17] 
that the SCV associated with the omission of the p-h 
spin-orbit and Coulomb interactions may cause an 
error in E0 of the ISGMR which becomes larger 
than 1 MeV, i.e. as large as 5 times the experimental 
error. It is important to point out that neglecting the 
p-h spin-orbit interaction in the RPA calculation 
leads to an increase of E0 of 208Pb by about 
0.8 MeV, and therefore to an increase of ~ 30 MeV 

in the value extracted for Knm. We thus explained the 
discrepancy [18] in the value deduced for Knm using 
Skyrme type or Gogny type effective interactions.  

In Fig. 2 we present the results of fully self-
consistent HF-based RPA calculations for the 
ISGMR (breathing mode) for several nuclei using 
the newly determined KDE0 interaction. We also 
show for comparison the results obtained using the 
SGII [19] interaction. We add that recently we have 
constructed the parameter set SK255 [20] of the 
Skyrme interaction, having Knm = 255 MeV, which 
yields for the ISGMR centroid energies E0 values 
which are quite close to the relativistic mean field 
based RPA (RRPA) results obtained using the NL3 
interaction which is associated with Knm = 272 MeV. 
Moreover, for the SK255 parameter set, one finds a 
good agreement with experimental data for E0 for 
all the nuclei considered, provided, the 
corresponding excitation energy ranges used in 
determining E0 are the same as those used in 
obtaining the experimental data. We have thus 
resolved the discrepancy in the extracted value of 
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Knm within relativistic and non-relativistic models 
[20] and conclude that the difference in the extracted 
values of Knm is mainly due to the differences in the 
values of the symmetry energy coefficient J and its 
slope L associated with these models (see also 
Ref. [21]). 

 
 

Fig. 2. Fully self-consistent HF-RPA results for the 
ISMGR strength functions of 90Zr, 116Sn, 144Sm, and 208Pb 
obtained using the interactions SGII and KDE0 and 
compared with the experimental data (cireles with error 
bars) [28]. 
 

7. Conclusions 
 

We have employed the SAM to fit the values of 
the parameters of the Skyrme interaction. We have 
fitted an extensive set of experimental data together 
with a few additional constraints. The experimental 
data set consists of the binding energies for 14 nuclei 
ranging from the normal to exotic (proton- or 
neutron-rich) ones, charge rms radii for 7 nuclei, 
spin-orbit splittings for the 2p proton and neutron 
orbits of the 56Ni nucleus, and rms radii for 1d5/2 and 
1f7/2 valence neutron orbits in the 17O and 41Ca 
nuclei, respectively. We have also included in the fit 
the experimental data on the constraint energies of 
the ISGMR and the critical density crρ determined 
from the stability conditions for the Landau 
parameters. The additional constraints imposed on 
the Skyrme parameters were: (i) the quantity 

3 ( / )P dS dρ ρ= , which is directly related to the 
slope of the symmetry energy S, must be positive for 

densities up to 3 0ρ , a condition imposed by the 
neutron star models [22]; (ii) the enhancement factor 
κ , associated with the EWSR for the isovector giant 
dipole resonance, should lie in the range of 0.1 - 0.5; 
and (iii) the Landau parameter '

0G , crucial for the 
spin properties of finite nuclei and nuclear matter, 
should be positive at 0ρ ρ= . 

Using these experimental data along with the 
additional constraints, we have carried out two 
different fits named as KDE0 and KDE. The 
corrections to the binding energy and charge rms 
radii due to the CM motion were performed using 
simple but consistent schemes. The selection of the 
experimental data in conjugation with some 
constraints ensures that these interactions can be 
used to study the bulk ground-state properties of 
nuclei ranging from the stable to the ones near the 
proton and neutron drip lines, as well as the 
properties of neutron stars. 

We have also presented results of fully self-
consistent HF based RPA calculations of the ISGMR 
strength function using the newly determined KDE0 
Skyrme effective interactions and compared them 
with those obtained using the SGII interactions. In 
conclusion: 

(i) We have presented a new Skyrme effective 
interaction (KDE0) which should be applicable in 
the study of ground state properties of nuclei, 
ranging from stable to the ones near the drip lines, as 
well as properties of neutron stars. 

(ii) We have also find that (see the review in 
Ref. [23]) that Knm = 240 ± 20 MeV. The uncertainty 
of 20 MeV is mainly due to the uncertainty in the 
value of J.  

The effects on the binding energy and rms radii 
due to correlations beyond mean-field [24, 26, 27] 
can be included in the fit. These effects are, in 
particular, important for the light nuclei. One may 
also include in the spin-orbit splitting, the 
contributions due to the electromagnetic spin-orbit 
interaction [25] and properly account for the isospin 
dependence of the spin-orbit interaction. Last but not 
least, one may also include the experimental data on 
the giant dipole and quadrupole resonances while 
fitting the Skyrme parameters in addition to the 
breathing-mode energy, as was done in the present 
work.  
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НАБЛИЖЕННЯ  СЕРЕДНЬОГО  ПОЛЯ  В  СКІНЧЕНИХ  ЯДРАХ  ТА  ЯДЕРНІЙ  МАТЕРІЇ 

 
Ш. Шломо 

 
Обговорюється підгонка параметрів сил Скірма, виходячи з експериментальних даних для основного стану 

нормальних та екзотичних ядер. Зокрема, для підгонки використано значення радіусів орбіт валентних 
нейтронів та енергій продихових мод кількох ядер. На значення параметрів Скірма накладено додаткові 
обмеження, зумовлені вимогою позитивності нахилу енергії симетрії S, коефіцієнта підсилення κ , що 
пов’язаний з гігантським дипольним резонансом, та параметра Ландау '

0G . Наведено результати розрахунку 
силової функції збудження продихової моди  в рамках теорії Хартрі - Фока з використанням наближення 
випадкових фаз. Обговорюється стан досліджень модуля стиснення ядерної матерії. 
 

ПРИБЛИЖЕНИЕ  СРЕДНЕГО  ПОЛЯ  В  КОНЕЧНЫХ  ЯДРАХ  И  ЯДЕРНОЙ  МАТЕРИИ 
 

Ш. Шломо 
 

Обсуждается подгонка параметров сил Скирма на основе экспериментальных данных для основного 
состояния нормальных и экзотических ядер. В частности, при подгонке использованы величины радиусов 
орбит валентных нейтронов и энергии дыхательных мод нескольких ядер. На величины параметров Скирма 
были наложены ограничения, обусловленные требованием положительных значений наклона энергии 
симметрии S, коэффициента усиления κ , связанного с гигантским дипольным резонансом, и параметра Ландау 

'
0G . Представлены результаты расчета силовой функции возбуждения дыхательной моды в рамках теории 

Хартри - Фока с использованием приближения случайных фаз. Обсуждается состояние исследований модуля 
сжатия ядерной материи. 
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