Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2015, volume 16, issue 2, pages 124-129.
Section: Nuclear Physics.
Received: 16.03.2015; Accepted: 11.06.2015; Published online: 20.07.2015.
PDF Full Text (en)
https://doi.org/

Transmission of gamma-quanta through vibrating target

A. Ya. Dzyublik*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: dzyublik@ukr.net

Abstract: The transmission of the Mossbauer γ-quanta through a vibrating absorber is analyzed in the framework of the quantum theory. For this aim the photons are described by the Bialynicki - Birulas wave function. We calculated time dependence of the wave packets, which describe the transmitted γ-photons. It is shown that the squared modulus of their wave function determines the detection rate of γ-photons in full analogy with particles having a mass. The effect of anomalous transmission of Mossbauer radiation, caused by high-frequency periodic swings of the absorber, and the corresponding suppression of reactions is studied.

Keywords: Mossbauer effect, gamma-quantum, vibrating crystal, photon wave function, dynamical scattering theory, anomalous transmission.

References:

1. M. Kopcewicz. Mossbauer effect studies of amorphous metals in magnetic radiofrequency fields. Struct. Chem. 2 (1991) 313. https://doi.org/10.1007/BF00672228

2. E.F. Makarov, A.V. Mitin. Gamma-resonance spectroscopy of solid body under high-frequency excitation. Sov. Phys. Usp. 19 (1976) 741. https://doi.org/10.1070/PU1976v019n09ABEH005290

3. A.V. Mitin. Coherent propagation of polarized gamma radiation in an acoustic wave field. Sov. J. Quant. Electron. 6 (1976) 458. https://doi.org/10.1070/QE1976v006n04ABEH011174

4. L.T. Tsankov. The spectrum of Mossbauer radiation passed through a vibrating resonant medium. J. Phys. A 13 (1980) 2959. https://doi.org/10.1088/0305-4470/13/9/021

5. Yu.V. Shvyd'ko, G.V. Smirnov. Enhanced yield into the radiative channel in Raman nuclear resonant forward scattering. J. Phys.: Condens. Matter 4 (1992) 2663. https://doi.org/10.1088/0953-8984/4/10/028

6. A.Ya. Dzyublik. Effect of forced vibrations on scattering of X-Rays and Mossbauer radiation by a crystal (1). phys. stat. sol. (b) 123 (1984) 53. https://doi.org/10.1002/pssb.2221230106

7. A.Ya. Dzyublik. Effect of forced vibrations on scattering of X-Rays and Mossbauer radiation by a crystal (2), Dynamical effects. phys. stat. sol. (b) 134 (1986) 503. https://doi.org/10.1002/pssb.2221340208

8. E.K. Sadykov, A.A. Yurichuk. Thickness effect for Mossbauer samples excited by an alternating field. Pisma v ZhETF 99 (2014) 195. [JETP Lett. 99 (2014) 174]. https://doi.org/10.1134/S0021364014030138

9. F. Vagizov, R. Shakhmuratov, E.K. Sadykov. Application of the Mossbauer effect to the study of opto-acoustic phenohenomena. phys. stat. sol. (b) 252 (2015) 469. https://doi.org/10.1002/pssb.201451391

10. F. Vagizov, V. Antonov, Y.V. Radeonychev et al. Coherent control of the wavefronts of recoilless γ-ray photons. Nature 508 (2014) 80. https://doi.org/10.1038/nature13018

11. J. Bialynicki-Birula. On the wave function of the photon. Acta Phys. Polonica 86 (1994) 97. https://doi.org/10.12693/APhysPolA.86.97

12. J.E. Sipe. Photon wave functions. Phys. Rev. A 52 (1995) 1875. https://doi.org/10.1103/PhysRevA.52.1875

13. I.S. Gradshtein, I.M. Ryzhik. Tables of Integrals, Sums, Series and Products (Moscow: Izd-vo Fiz.-Mat., 1963) 1108 p. Google Books

14. M.L. Goldberger, K.M. Watson. Collision Theory (New York: Wiley, 1964) 919 p. Google Books

15. F.J. Lynch, R.E. Holland, M. Hammermesh. Time Dependence of Resonantly Filtered Gamma Rays from Fe57. Phys. Rev. 120 (1960) 513. https://doi.org/10.1103/PhysRev.120.513