Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 1, pages 106-114.
Section: Engineering and Methods of Experiment.
Received: 18.11.2016; Accepted: 15.06.2017; Published online: 7.08.2017.
PDF Full Text (ru)
https://doi.org/10.15407/jnpae2017.01.106

New composite fibres for natural and waste waters decontamination from cesium radionuclides

Yu. V. Bondar1,*, S. V. Kuzenko1, V. M. Slyvinsky1, T. I. Koromyslichenko2

1 State Institution "Institute of Environmental Geochemistry", National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: juiliavad@yahoo.com.

Abstract: New composite adsorbent based on modified polyacrylonitrile fibers is synthesized by in situ deposition of potassium-nickel ferrocyanide layer on the fibers’ surface. It is shown that the ferrocyanide phase forms a compact homogeneous layer on the fibers’ surface consisted of rounded nanoaggregates (∼ 40 - 50 nm). Composite fibers are chemically stable in both acidic and alkaline solutions. Sorption experiments have demonstrated that synthesized fibers are high-selective adsorbents and can be used for the purification of natural waters and high-salt solutions from cesium radionuclides.

Keywords: composite adsorbent, polyacrylonitrile fibers, potassium-nickel ferrocyanide, selectivity, 137Cs, high-salt solutions, liquid radioactive waste.

References:

1. I.V. Tananaev, G.B. Saifer, Yu.Ya. Kharitonov et al., Ferrocyanide Chemistry, Moskva: Nauka (1971), 320 p. (Rus)

2. E.H. Tusa, A. Paavola, R. Harjula et al., Industrial Scale Removal of Cesium with Hexacyanoferrate Exchanger - Process Realization and Test Run, Nucl. Technol. 107 (1994) 279 - 284. http://doi.org/10.13182/NT94-A35008

3. R. Koivula, R. Harjula, J. Lehto, Selective removal of radionuclides from nuclear waste effluents with inorganic ion exchangers, NATO Advanced Research Workshop "Combined and Hybrid Adsorbents: Fundamentals and Applications", Kyiv, Pushcha-Vodytsa, Ukraine, 15 - 17 Sept. 2005. - Kyiv (2005), P. 171 - 176.

4. V.V. Milyutin, B.G. Ershov, Voprosy radiatsionnoj bezopasnosti 79, No. 3 (2015) 52 - 55. (Rus)

5. T. Vincent, C. Vincent, E. Guibal, Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents - A Mini-Review, Molecules 20 (2015) 20582 - 20613. http://doi.org/10.3390/molecules201119718

6. L.M. Sharygin, A.Yu. Muromskij, Radiokhimiya 46, No. 2 (2004) 171 - 175. (Rus)

7. Yu.P. Korchagin, Research and application of selective inorganic sorbents for the systems for processing of liquid radioactive nuclear waste improvement: Thesis, All-Russian Research Institute for Nuclear Power Plants Operation, Moskva (1999), 24 p. (Rus)

8. M.V. Logunov, A.S. Skobtsov, B.V. Soldatov et al., Research and application of inorganic selective sorbents at Mayak PA, C. R. Chimie 7 (2004) 1185 - 1190. https://doi.org/10.1016/j.crci.2004.05.006

9. F. Sebesta, Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds, J. Radioanal. Nucl. Chem. 220, No. 1 (1997) 77 - 88. http://doi.org/10.1007/BF02035352

10. V.P. Remez, V.I. Zelenin, A.L. Smirnov et al., Sorbtsionnye i Khromatograficheskie Protsessy 9, No. 5 (2009) 627 - 632. (Rus) http://www.sorpchrom.vsu.ru/articles/20090505.pdf

11. V.P. Remez, E.V. Zheltonozhko, Yu.A. Sapozhnikov, The experience of using Anfezh sorbent for recovery of radioactive caesium from sea water, J. Radiat. Protect. Dosimetry 75 (1998) 77 - 78. https://doi.org/10.1093/oxfordjournals.rpd.a032251

12. J. Kamenik, H. Dulaiova, F. Sebesta et al., Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples, J. Radioanal. Nucl. Chem. 296, No. 2 (2013) 841 - 846. https://doi.org/10.1007/s10967-012-2007-4

13. B.E. Johnson, P.H. Santschi, R.S. Addleman et al., Collection of fission and activation product elements from fresh and ocean waters: A comparison of traditional and novel sorbents, Appl. Radiat. Isot. 69, No. 1 (2011) 205 - 216. https://doi.org/10.1016/j.apradiso.2010.07.025

14. P.K. Sinha, K.B. Lal, Jaleel Ahmed, Development of a novel composite by coating polyacrylic fibres with hexacyanoferrates for the removal of Cs from radioactive liquid waste, J. Radioanal. Nucl. Chem. 238, No. 1-2 (1998) 51 - 59. http://doi.org/10.1007/BF02385355

15. V.V. Zheleznov, B. Vysotskij, Atomnaya Energiya 92, No. 6 (2002) 460 - 466. (Rus) https://doi.org/10.1023/A:1020270300242

16. Yu. Bondar, S. Kuzenko, D-H. Han, Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric, Nanoscale Res. Lett. 9 (2014) 180. https://doi.org/10.1186/1556-276X-9-180

17. V.V. Galysh, M.T. Kartel, V.V. Milyutin et al., Composite cellulose-inorganic sorbents for 137Cs recovery, J. Radioanal. Nucl. Chem. 301, No. 2 (2014) 315 - 321. https://doi.org/10.1007/s10967-014-3179-x

18. F. Sebesta, J. John, A. Motl, Phase II Report on the Evaluation of Polyacrylonitrile (PAN) as a Binding Polymer for Absorbers Used to Treat Liquid Radioactive Wastes, SAND96-1088 (1996).

19. J-K. Moon, K-W. Kim, C-H. Jung et al., Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions, J. Radioanal. Nucl. Chem. 246, No. 2 (2000) 299 - 307. http://doi.org/10.1023/A:1006714322455

20. A. Nilchi, R. Saberi, M. Moradi et al., Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution, Chem. Eng. J. 172, No. 1 (2011) 572 - 580. https://doi.org/10.1016/j.cej.2011.06.011

21. V.I. Grachek, G.N. Lysenko, Z.I. Akulich et al., Zhurnal Obshchej Khimii 79, No. 3 (2009) 360 - 365. (Rus) https://doi.org/10.1134/S1070363209030037

22. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Translated from English, ed. by Yu. Pentin, Moskva: Mir (1991), 536 p. (Rus) Google books

23. H. Mimura, J. Lehto, R. Harjula, Ion Exchange of Cesium on Potassium Nickel Hexacyanoferrate(II)s, J. Nucl. Sci. Technol. 34, No. 5 (1997) 484 - 489. http://dx.doi.org/10.1080/18811248.1997.9733695

24. T.P. Valsala, A. Joseph, J.G. Shah et al., Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger, J. Nucl. Materials 384, No. 2 (2009) 146 - 152. https://doi.org/10.1016/j.jnucmat.2008.11.003

25. H. Mimura, J. Lehto, R. Harjula, Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate (II), J. Nucl. Sci. Technol. 34, No. 6 (1997) 582 - 587. http://dx.doi.org/10.1080/18811248.1997.9733711

26. A.A. Ennan, G.N. Shykhaleeva, S.K. Babynets et al., Visnyk Odes'kogo Natsional'nogo Universytetu. Khimiya 11, No. 1-2 (2006) 67 - 74. (Rus)