Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 2, pages 136-145.
Section: Nuclear Physics.
Received: 17.07.2017; Accepted: 12.10.2017; Published online: 22.11.2017.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2017.02.136

Influence of the nuclear part of the nuclei interaction potential to the mass yields of fragments from fission of highly-excited nuclei

V. Yu. Denisov, T. O. Margitych*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: margtanya@gmail.com

Abstract: The influence for various parameterizations of the nuclear part of the interaction potential to the mass yields of fission fragments of highly excited nuclei for the reaction α+197Au → fission was studied. It is shown that using of various nuclear potentials leads to small changes in the yields of fission fragments of the nuclei.

Keywords: nuclear interaction, parameterizations of the nuclear part of the interaction potential, nuclei fission, mass yields of fragments from fission.

References:

1. D.L. Hill, J.A. Wheeler. Nuclear Constitution and the Interpretation of Fission Phenomena. Phys. Rev. 89 (1953) 1102. https://doi.org/10.1103/PhysRev.89.1102

2. P. Fong. Statistical Theory of Nuclear Fission: Asymmetric Fission. Phys. Rev. 102 (1956) 434. https://doi.org/10.1103/PhysRev.102.434

3. V.M. Strutinsky. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95 (1967) 420. https://doi.org/10.1016/0375-9474(67)90510-6

4. V.M. Strutinsky. Shells in deformed nuclei. Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4

5. M. Brack et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320

6. B.D. Wilkins, E.P. Steinberg, R.R. Chasman. Scission-point model of nuclear fission based on deformed-shell effects. Phys. Rev. C 14 (1976) 1832. https://doi.org/10.1103/PhysRevC.14.1832

7. A.J. Sierk. Macroscopic model of rotating nuclei. Phys. Rev. C 33 (1986) 2039. https://doi.org/10.1103/PhysRevC.33.2039

8. S. Oberstedt, F.-J. Hambsch, F. Vives. Fission-mode calculations for 239U, a revision of the multi-modal random neck-rupture model. Nucl. Phys. A 644 (1998) 289. https://doi.org/10.1016/S0375-9474(98)00598-3

9. K.-H. Schmidt et al. Relativistic radioactive beams: A new access to nuclear-fission studies. Nucl. Phys. A 665 (2000) 221. https://doi.org/10.1016/S0375-9474(99)00384-X

10. G.D. Adeev, P.N. Nadtochy. Probabilistic Scission of a Fissile Nucleus into Fragments. Phys. At. Nucl. 66 (2003) 618. https://doi.org/10.1134/1.1568813

11. H. Goutte, P. Casoli, J.-F. Berger. Mass and kinetic energy distributions of fission fragments using the time dependent generator coordinate method. Nucl. Phys. A 734 (2004) 217. https://doi.org/10.1016/j.nuclphysa.2004.01.038

12. R.G. Thomas et al. Entrance channel dependence of quasifission in reactions forming 220Th. Phys. Rev. C 77 (2008) 034610. https://doi.org/10.1103/PhysRevC.77.034610

13. A. Buttkewitz et al. Fission studies with 140 MeV α-particles. Phys. Rev. C 80 (2009) 037603. https://doi.org/10.1103/PhysRevC.80.037603

14. C.J. Lin et al. Energy dependence of fission-fragment mass distributions from strongly damped shape evolution. J. Phys.: Conf. Ser. 420 (2013) 012126. https://doi.org/10.1088/1742-6596/420/1/012126

15. V.Yu. Denisov, V.A. Plujko. Problems of Nuclear Physics and Nuclear Reactions (Kiev: Izdatel'sko-poligraficheskij tsentr "Kievskij universitet", 2013) 430 p. (Rus) Book

16. H. Eslamizadeh, H. Raanaei. Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C + 194Pt and 18O + 150Sm. Ann. Nucl. Energy. 51 (2013) 252. https://doi.org/10.1016/j.anucene.2012.06.035

17. P.N. Nadtochy et al. Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions. Phys. Rev. C 89 (2014) 014616. https://doi.org/10.1103/PhysRevC.89.014616

18. F.A. Ivanyuk, S. Chiba, Y. Aritomo Scission-point configuration within the two-center shell model shape parameterization. Phys. Rev. C 90 (2014) 054607. https://doi.org/10.1103/PhysRevC.90.054607

19. K. Mazurek, C. Schmitt, P.N. Nadtochy Description of isotopic fission-fragment distributions within the Langevin approach. Phys. Rev. C 91 (2015) 041603. https://doi.org/10.1103/PhysRevC.91.041603

20. P. Moller et al. Fission barriers at the end of the chart of the nuclides. Phys. Rev. C 91 (2015) 024310. https://doi.org/10.1103/PhysRevC.91.024310

21. J. Sadhukhan, W. Nazarewicz, N. Schunck. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu. Phys. Rev. C 93 (2016) 011304. https://doi.org/10.1103/PhysRevC.93.011304

22. V.Yu. Denisov, T.O. Margitych, I.Yu. Sedykh. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A ≤ 220. Nucl. Phys. A 958 (2017) 101. https://doi.org/10.1016/j.nuclphysa.2016.11.007

23. V.Yu. Denisov, I.Yu. Sedykh. Fission-fragment mass yields of highly excited nuclei with 119 ≤ A ≤ 218 produced in various reactions. Nucl. Phys. A 963 (2017) 15. https://doi.org/10.1016/j.nuclphysa.2017.04.002

24. A.J. Sierk. Macroscopic model of rotating nuclei. Phys. Rev. C 33 (1986) 2039. https://doi.org/10.1103/PhysRevC.33.2039

25. J. Blocki et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4

26. H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992

27. A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. https://doi.org/10.1016/0375-9474(95)00374-A

28. V.Yu. Denisov, N.A. Pilipenko. Interaction of two deformed, arbitrarily oriented nuclei. Phys. Rev. C 76 (2007) 014602. https://doi.org/10.1103/PhysRevC.76.014602

29. V.Yu. Denisov, N.A. Pilipenko. Interaction potential between two axially symmetric nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 4(22) (2007) 49. http://jnpae.kinr.kiev.ua/22(4)/Articles_PDF/jnpae-2007-4(22)-0049-Denisov.pdf

30. V.Yu. Denisov, N.A. Pilipenko. Interaction between two axially symmetric nuclei. Ukr. J. Phys. 53 (2008) 845. http://archive.ujp.bitp.kiev.ua/files/journals/53/9/530902p.pdf

31. V.Yu. Denisov, N.A. Pilipenko. Fusion of deformed nuclei: 12C + 12C. Phys. Rev. C 81 (2010) 025805. https://doi.org/10.1103/PhysRevC.81.025805

32. V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution and deep sub-barrier fusion of heavy nuclei. Phys. Rev. C 89 (2014) 044604. https://doi.org/10.1103/PhysRevC.89.044604

33. V.Yu. Denisov, T.O. Margitych. Barriers in the energy of deformed nuclei. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 15(2) (2014) 119. http://jnpae.kinr.kiev.ua/15.2/Articles_PDF/jnpae-2014-15-0119-Denisov.pdf

34. V.Yu. Denisov, T.O. Margitych. Minimum barrier height for symmetric and asymmetric nuclear systems. Ukr. J. Phys. 60 (2015) 585.

35. V.Yu. Denisov, T.O. Margitych. Influence of deformations with higher multypolity to the barrier height of nuclei. Rep. Nat. Acad. Sci. Ukraine 4 (2015) 56. https://doi.org/10.15407/dopovidi2015.04.056

36. V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1

37. V.Yu. Denisov. Nucleus-nucleus potential with shell-correction contribution. Phys. Rev. C 91 (2015) 024603. https://doi.org/10.1103/PhysRevC.91.024603

38. M. Brack, Ph. Quentin. Disappearance of shell effects at high excitation. Self-consistent calculations at finite temperatures. Phys. Scr. 10A (1974) 163. https://doi.org/10.1088/0031-8949/10/A/028

39. R. Capote et al. RIPL Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004

40. V.Yu. Denisov, N.A. Pilipenko. Elastic scattering of heavy nuclei and nucleusnucleus potential with repulsive core. Phys. At. Nucl. 73 (2010) 1152. https://doi.org/10.1134/S1063778810070082

41. B.V. Derjaguin. Untersuchungen fiber die Reibung und Adhasion, IV. Theorie des Anhaftens kleiner Teilchen. Kolloid-Z. 69 (1934) 155. https://doi.org/10.1007/BF01433225

42. G. Audi et al. The AME2012 atomic mass evaluation. Chin. Phys. C 36(12) (2012) 1287. https://doi.org/10.1088/1674-1137/36/12/002