Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 2, pages 179-187.
Section: Radiobiology and Radioecology.
Received: 14.02.2017; Accepted: 12.10.2017; Published online: 22.11.2017.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2017.02.179

Diversity of microflora at the fourth destroyed unit of the ChNPP

O. Yu. Pareniuk1,2, K. E. Shavanova1, V. V. Illienko1, I. O. Simutin3, D. O. Samofalova4, V. B. Rybalka5, K. Nanba2, T. Takasi2, I. M. Gudkov1,*

1 National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
2 Institute of Environmental Radioactivity of Fukushima University, Fukushima, Japan
3 Kyiv Taras Shevchenko National University, Kyiv, Ukraine
4 SI “Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine”, Kyiv, Ukraine
5 Institute for Safety Problems of NPP, National Academy of Sciences of Ukraine, Chornobyl, Ukraine


*Corresponding author. E-mail address: ingudkov@ukr.net

Abstract: DNA of the substrate, sampled from six points in the destroyed 4-th power unit of ChNPP, where the dose rate on the microorganisms ranges from 0.008 to 0.12 Gy/h, was analyzed by New Generation Sequencing technology. It was found that the most diverse and stable microbiome occurs in sample, located outside of the "Ukryttya" object on the industrial site (conditional control). There are no dominants in it, which means that it is the most balanced and approximate to the general state of the soil microbiome of ecosystems surrounding the ChNPP. As for the sample, taken from the spot, where the dose rate was the highest, total number of species represented appeared eight times smaller, but dominance index was the highest, which indicates the formation of distinct microbiome dominants.

Keywords: ChNPP, the fourth unit, radionuclide contamination, DNA sequencing, microflora.

References:

1. A.A. Borovoj. Kurchatov Institute works on liquidation of consequences of the accident. 25-th anniversary of the Chernobyl Nuclear Power Plant accident (Research Center “Kurchatovskij institut”, 2011) 83 p. Google Books

2. T.I. Tugay et al. Principles of the low dozes irradiation influence on microscopic fungi. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy 13(4) (2012) 396. (Ukr) http://jnpae.kinr.kiev.ua/13.4/Articles_PDF/jnpae-2012-13-0396-Tugay.pdf

3. T.I. Tugay et al. Response reactions of the fungi, isolated from inner locations of “Ukryttya”, which have different levels of radioactivity. Zbirnyk naukovykh prats' Instytutu yadernykh doslidzhen' 1(14) (2005) 128. (Ukr)

4. J. Dighton, T. Tugay, N. Zhdanova. Fungi and ionizing radiation from radionuclides. FEMS Microbiology Letters 281(2) (2008) 109. http://doi.org/10.1111/j.1574-6968.2008.01076.x

5. V.B. Rybalka et al. The microbic factor, fuel-containing materials and submicronic particles formation in object "Ukryttya". Problemy Bezpeky Atomnykh Electrostantsij i Chornobylya 3 (2005) 87. (Rus) http://www.ispnpp.kiev.ua/wp-content/uploads/2017/2005_031/c87.pdf

6. M.O. Boretska, I.A. Kozlova. Biofilms on a metal surface as microbial corrosion factor. Microbiol. Zhurn. 72(3) (2010) 57. http://www.imv.kiev.ua/images/doc/MB_72_3_2010.pdf

7. A.K. Lee, D.K. Newman. Microbial iron respiration: impacts on corrosion processes. Applied Microbiology and Biotechnology 62(2-3) (2003) 134. https://doi.org/10.1007/s00253-003-1314-7

8. Understanding biocorrosion. Fundamentals and applications. Eds. T. Liengen et al. (Woodhead Publishing, 2014) 447 p. Book

9. L.E. Rendon Diaz Miron, M.E. Lara Magana, M.R. Lara. Microorganisms concrete interactions. MRS Proceedings 1768 (2015). https://doi.org/10.1557/opl.2015.319

10. Z.P. Kopteva, V.V. Zanina, I.A. Kozlova. Microbial corrosion of protective coatings. Surface Engineering 20(4) (2004) 275. http://dx.doi.org/10.1179/026708404225016463

11. S.C. Schuster. Next-generation sequencing transforms today’s biology. Nature Methods 5(1) (2008) 16. https://doi.org/10.1038/nmeth1156

12. J. Kuczynski et al. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics 36 (2011) 10.7. https://doi.org/10.1002/0471250953.bi1007s36

13. K.M. Keiblinger et al. Soil metaproteomics - comparative evaluation of protein extraction protocols. Soil Biology & Biochemistry 54 (2012) 14. https://doi.org/10.1016/j.soilbio.2012.05.014

14. M. Ragon et al. Sunlight-exposed biofilm microbial communities are naturally resistant to Chernobyl ionizing-radiation levels. PloS One 6(7) (2011) e21764. https://doi.org/10.1371/journal.pone.0021764

15. G.B. Zavilgelsky et al. Isolation and analysis of UV and radio-resistant bacteria from Chernobyl. Journal of Photochemistry and Photobiology B: Biology 43(2) (1998) 152. https://doi.org/10.1016/S1011-1344(98)00099-2

16. N.S. Davis, G.J. Silverman, E.B. Msurovsky. Radiation-resistant, pigmented coccus isolated from haddock tissue. Journal of Bacteriology 86 (1963) 294. http://jb.asm.org/content/86/2/294.full.pdf+html

17. A.W. Anderson et al. Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10(1) (1956) 575.

18. C. Luo et al. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Applied and Environmental Microbiology 80(5) (2014) 1777. https://doi.org/10.1128/AEM.03712-13

19. J.E. Brown et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. Journal of Environmental Radioactivity 153 (2016) 141. https://doi.org/10.1016/j.jenvrad.2015.12.011

20. M. Sagova-Mareckova et al. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Applied and Environmental Microbiology 74(9) (2008) 2902. https://doi.org/10.1128/AEM.02161-07

21. J.G. Caporaso et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5) (2010) 335. https://doi.org/10.1038/nmeth.f.303

22. J.R. Rideout et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2 (2014) e545. https://doi.org/10.7717/peerj.545

23. D. McDonald et al. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6(3) (2012) 610. https://doi.org/10.1038/ismej.2011.139

24. J. Algina, S. Olejnik. Conducting power analyses for anova and ancova in between-subjects designs. Evaluation & the Health Professions 26(3) (2003) 288. https://doi.org/10.1177/0163278703255248

25. J. Stegemann, N. Buenfeld. Prediction of leachate PH for cement paste containing pure metal compounds. Journal of Hazardous Materials 90(2) (2002) 169. https://doi.org/10.1016/S0304-3894(01)00338-7

26. J. Balogh. Lebensgemeinschaften der landtiere: ihre erforschung unter besonderer beruecksichtigung der zoozoenologischen arbeitsmethoden (Berlin: Akademie Verlag, 1958) 560 p.

27. A. Chao. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11(4) (1984) 265. http://www.jstor.org/stable/4615964

28. D.P. Faith, A.M. Baker. Phylogenetic diversity (pd) and biodiversity conservation: some bioinformatics challenges. Evolutionary Bioinformatics 2 (2006) 121. Article

29. C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal 27(3) (1948) 379. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x